Skip to content

Commit

Permalink
Merge branch 'ph_acc_resolution2' into 'master'
Browse files Browse the repository at this point in the history
Resolving copied code between rot_dds.v and ph_acc.v

See merge request hdl-libraries/bedrock!213
  • Loading branch information
ldoolitt committed Dec 6, 2024
2 parents 3559a54 + 796650a commit 484dfbd
Show file tree
Hide file tree
Showing 3 changed files with 47 additions and 45 deletions.
37 changes: 37 additions & 0 deletions dsp/ph_acc.v
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,43 @@
// Tuned to allow 32-bit control, divided 20-bit high and 12-bit low,
// which gets merged to 32-bit binary when modulo is zero.
// But also supports non-binary frequencies: see the modulo input port.

// Note that phase_step_h and phase_step_l combined fit in a 32-bit word.
// This is intentional, to allow atomic updates of the two controls
// in 32-bit systems. Indeed, when modulo==0, those 32 bits can be considered
// a single phase step increment

// The phase generation algorithm
// 0. The phase increments for dds are generated using a technique described
// in these 2 places:
// Section: PROGRAMMABLE MODULUS MODE in:
// https://www.analog.com/media/en/technical-documentation/data-sheets/ad9915.pdf
// (AND) https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
// Basically, increment the phase step at a coarse resolution, accumulate the
// error on the side, and when that error accumulates to the lowest bit of
// the coarse counter, add an extra 1 to the following phase step.
// 1. phase_step_h is the coarse (20 bit) integer truncated phase increment for
// the cordic. There is a 1-bit increment of phase that comes from
// accumulating residue phase.
// 2. This residue phase is accumulating in steps of phase_step_l, in a 12-bit
// counter.
// 3. However, there will be an extra residue even for this 12-bit counter,
// which is the modulus, and this added as an offset when the counter crosses 0

// 12-bit modulo supports largest known periodicity in a suggested LLRF system,
// 1427 for JLab. For more normal periodicities, use a multiple to get finer
// granularity.
// Note that the downloaded modulo control is the 2's complement of the
// mathematical modulus.
// e.g., SSRF IF/F_s ratio 8/11, use
// modulo = 4096 - 372*11 = 4
// phase_step_h = 2^20*8/11 = 762600
// phase_step_l = (2^20*8%11)*372 = 2976
// e.g., Argonne RIA test IF/F_s ratio 9/13, use
// modulo = 4096 - 315*13 = 1
// phase_step_h = 2^20*9/13 = 725937
// phase_step_l = (2^20*9%13)*315 = 945

module ph_acc(
input clk, // Rising edge clock input; all logic is synchronous in this domain
input reset, // Active high, synchronous with clk
Expand Down
53 changes: 9 additions & 44 deletions dsp/rot_dds.v
Original file line number Diff line number Diff line change
Expand Up @@ -10,40 +10,6 @@
// 8/11 for SSRF
// 9/13 for Argonne RIA
//
// The phase generation algorithm
// 0. The phase increments for dds are generated using a technique described
// in these 2 places:
// Section: PROGRAMMABLE MODULUS MODE in:
// https://www.analog.com/media/en/technical-documentation/data-sheets/ad9915.pdf
// (AND) https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
// Basically, increment the phase step at a coarse resolution, accumulate the
// error on the side, and when that error accumulates to the lowest bit of
// the coarse counter, add an extra 1 to the following phase step.
// 1. phase_step_h is the coarse (20 bit) integer truncated phase increment for
// the cordic. There is a 1-bit increment of phase that comes from
// accumulating residue phase.
// 2. This residue phase is accumulating in steps of phase_step_l, in a 12-bit
// counter.
// 3. However, there will be an extra residue even for this 12-bit counter,
// which is the modulus, and this added as an offset when the counter crosses 0

// 12-bit modulo supports largest known periodicity in a suggested LLRF system,
// 1427 for JLab. For more normal periodicities, use a multiple to get finer
// granularity.
// Note that the downloaded modulo control is the 2's complement of the
// mathematical modulus.
// e.g., SSRF IF/F_s ratio 8/11, use
// modulo = 4096 - 372*11 = 4
// phase_step_h = 2^20*8/11 = 762600
// phase_step_l = (2^20*8%11)*372 = 2976
// e.g., Argonne RIA test IF/F_s ratio 9/13, use
// modulo = 4096 - 315*13 = 1
// phase_step_h = 2^20*9/13 = 725937
// phase_step_l = (2^20*9%13)*315 = 945

// TODO:
// Potentially, isolate phase generation into a separate module.
// Haha, turns out there is ph_acc.v (We should USE it).
// Synthesizes to ??? slices at ??? MHz in XC3Sxxx-4 using XST-??
//

Expand All @@ -65,19 +31,18 @@ parameter lo_amp = 18'd79590;
// Sometimes we cheat and use slightly smaller values than above,
// to make other computations fit better.

wire [18:0] phase_acc;
ph_acc ph_acc_i (
.clk(clk), .reset(reset), .en(1'b1), // input
.phase_acc(phase_acc), // output [18:0]
.phase_step_h(phase_step_h), // input [19:0]
.phase_step_l(phase_step_l), // input [11:0]
.modulo(modulo) // input [11:0]
);
// See rot_dds_config

reg carry=0, reset_d=0;
reg [19:0] phase_h=0, phase_step_hp=0;
reg [11:0] phase_l=0;
always @(posedge clk) begin
{carry, phase_l} <= reset ? 13'b0 : ((carry ? modulo : 12'b0) + phase_l + phase_step_l);
phase_step_hp <= phase_step_h;
reset_d <= reset;
phase_h <= reset_d ? 20'b0 : (phase_h + phase_step_hp + carry);
end
cordicg_b22 #(.nstg(20), .width(18), .def_op(0)) trig(.clk(clk), .opin(2'b00),
.xin(lo_amp), .yin(18'd0), .phasein(phase_h[19:1]),
.xin(lo_amp), .yin(18'd0), .phasein(phase_acc),
// 2^17/1.64676 = 79594, use a smaller value to keep CORDIC round-off
// from overflowing the output
.xout(cosa), .yout(sina));
Expand Down
2 changes: 1 addition & 1 deletion dsp/rules.mk
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ bits: $(BITS_)
$(VVP) $< +trace
$(PYTHON) $(word 2, $^) -f $*

rot_dds_tb: cordicg_b22.v
rot_dds_tb: cordicg_b22.v ph_acc.v

mon_12_tb: cordicg_b22.v

Expand Down

0 comments on commit 484dfbd

Please sign in to comment.