Skip to content

GitHub associated with the research paper "Data-based Pharmacodynamic Modeling for BIS and Mean Arterial Pressure Prediction during General Anesthesia"

License

Notifications You must be signed in to change notification settings

BobAubouin/BIS-MAP-Pred

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BIS-MAP-Pred

GitHub associated with the research paper "Data-based Pharmacodynamic Modeling for BIS and Mean Arterial Pressure Prediction during General Anesthesia" accepted for ECC23.

Structure

.
├─── lee_code # folder to reproduce the method of lee et al.
     ├─── code_lee_v2.py # code from Lee et al. modified for tensorflow v2
     ├─── create_dataset_lee.py # create the dataset that can be used by code_lee_v2.py
     ├─── test_lee.py # ??
├─── data # folder to store the data used in the code
     ├─── info_clinic_vitalDB.csv # personnal information of the patient in the vitalDB dataset
├─── create_dataset.py # download the needed data from vitaldb dataset
├─── separate_train_test.py # separate test and train set using the change of target as the critrion
├─── select_cases.py # filter the case from vitalDB to obtain the case_id of the patient used in the study
├─── all_reg.py # test different regressor for predicting BIS and MAP along the surgery
├─── delayed_pred.py # test the SVR regressor to predict BIS and MAP in the future for different time ahead
├─── svr_kernel.py # test different kernel for the SVR regressor
├─── standard_model.py # test the standard model for predicting BIS and MAP
├─── metrics_function.py # include function to compute prediction metrics and create usefull plot
├── LICENSE
├── requirements.txt
├── README.md
└── .gitignore   

Installation

Install all the required packages with the command:

pip install -r requirement.txt

Usage

For standard model and regression evaluation:

  • First the database must be created from online vitalDB data. for this run the code Create_dataset.py
  • Then Standard models and Regressions technique can be evaluated by launching the corresponding scripts, hyperparameters are at the beginning of the script.

For Lee et al. model evaluation open lee_code folder:

  • First create the dedicated database (with only test cases) launching Create_dataset_lee.py
  • Launch the script test_lee.py to evaluate their method on our selected cases

Authors

Bob Aubouin--Pairault, Mirko Fiacchini, Thao Dang

License

MIT license

About

GitHub associated with the research paper "Data-based Pharmacodynamic Modeling for BIS and Mean Arterial Pressure Prediction during General Anesthesia"

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages