Skip to content

[ECCV2024] Official implementation of the paper "When Pedestrian Detection Meets Multi-Modal Learning: Generalist Model and Benchmark Dataset"

License

Notifications You must be signed in to change notification settings

BubblyYi/MMPedestron

Repository files navigation

MMPedestron

[ECCV2024] This is the official implementation of the paper "When Pedestrian Detection Meets Multi-Modal Learning: Generalist Model and Benchmark Dataset".

Authors: Yi Zhang, Wang ZENG, Sheng Jin, Chen Qian, Ping Luo, Wentao Liu

MMPedestron Examples

Configs and Models

Region proposal performance

  1. Prtrained Stage
Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
  1. CrowdHuman
Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)

3.COCO-Person

Method&Config Backbone Download
MMPedestron finetune UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)

4.FLIR

Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)

5.PEDRo

Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
MMPedestron(10% train data) UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
Co-Dino Res50 -
YOLOX CSPDarknet -
Meta Transformer ViTAdapter -
Faster R-CNN Res50 -

6.LLVIP Datasets

Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
Co-Dino RGB, Co-Dino IR Res50 -
YOLOX RGB, YOLOX IR CSPDarknet -
Meta Transformer RGB, Meta Transformer IR ViTAdapter -
Faster R-CNN RGB, Faster R-CNN IR Res50 -

7.InoutDoor Datasets

Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
Co-Dino RGB, Co-Dino Depth Res50 -
YOLOX RGB, YOLOX Depth CSPDarknet -
Meta Transformer RGB, Meta Transformer Depth ViTAdapter -
Faster R-CNN RGB, Faster R-CNN Depth Res50 -

8.STCrowd Datasets

Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
Co-Dino RGB, Co-Dino Lidar Res50 -
YOLOX RGB, YOLOX Lidar CSPDarknet -
Meta Transformer RGB, Meta Transformer Lidar ViTAdapter -
Faster R-CNN RGB, Faster R-CNN Lidar Res50 -

9.EventPed Datasets

Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
Co-Dino RGB, Co-Dino Lidar Res50 -
YOLOX RGB, YOLOX Lidar CSPDarknet -
Meta Transformer RGB, Meta Transformer Lidar ViTAdapter -
Faster R-CNN RGB, Faster R-CNN Lidar Res50 -

9.Fusion Exp

9-1 LLVIP

Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
Early-Fusion Res50 -
FPN-Fusion Res50 -
ProbEN RGB, ProbEN IR Res50 -
CMX SwinTransformer -

9-2 InOutDoor

Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
Early-Fusion UNIXViT -
FPN-Fusion Res50 -
ProbEN RGB, ProbEN Depth Res50 -
CMX SwinTransformer -

9-1 STCrowd

Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
Early-Fusion Res50 -
FPN-Fusion Res50 -
ProbEN RGB, ProbEN Lidar Res50 -
CMX SwinTransformer -

9-1 EventPed

Method&Config Backbone Download
MMPedestron UNIXViT Gooogle Drive, Baidu Yun (Code: mmpd)
Early-Fusion Res50 -
FPN-Fusion Res50 -
ProbEN RGB, ProbEN Event Res50 -
CMX SwinTransformer -

Compared with SOTA

Installation

Prepare environment

  1. Create a conda virtual environment and activate it.
conda create -n mmpedestron python=3.6
conda activate mmpedestron
  1. Install requirements, we recommend you to install requirements by env_deploy.sh
conda install cudatoolkit=10.1

sh env_deploy.sh

Data Preparation

Please obtain the datasets repo from the following: MMPD-Dataset

Training

Manage training jobs with Slurm

sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} ${GPUS}

Testing

Manage testing jobs with Slurm

sh tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT} ${GPUS}

License

Codes and data are freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please contact Mr. Sheng Jin (jinsheng13[at]foxmail[dot]com). We will send the detail agreement to you.

Citation

if you find our paper and code useful in your research, please consider giving a star and citation :)

@inproceedings{zhang2024when,
  title={When Pedestrian Detection Meets Multi-Modal Learning: Generalist Model and Benchmark Dataset},
  author={Zhang, Yi and Zeng, Wang and Jin, Sheng and Qian, Chen and Luo, Ping and Liu, Wentao},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2024},
  month={September}
}

About

[ECCV2024] Official implementation of the paper "When Pedestrian Detection Meets Multi-Modal Learning: Generalist Model and Benchmark Dataset"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published