The repository has the following structure:
📦Network-Measurements-and-Data-Analysis-Lab
┣ 📂DA-lab
┃ ┣ 📂1-Failure-management-optical
┃ ┃ ┣ 📜datasets.zip
┃ ┃ ┣ 📜failure-management.ipynb
┃ ┃ ┗ 📜theor+HW1.pdf
┃ ┣ 📂2-Traffic-prediction
┃ ┃ ┣ 📜dataset.zip
┃ ┃ ┣ 📜theor+HW2.pdf
┃ ┃ ┗ 📜traffic-prediction.ipynb
┃ ┣ 📂3-QoT-estimation
┃ ┃ ┣ 📜datasets.zip
┃ ┃ ┣ 📜qos-estimation.ipynb
┃ ┃ ┗ 📜theor+HW3.pdf
┃ ┣ 📂4-Failure-management-microwave
┃ ┃ ┣ 📜failure-management-microwave.ipynb
┃ ┃ ┣ 📜Labelled_Multiclass.csv
┃ ┃ ┗ 📜theor.pdf
┃ ┗ 📂5-Explainable-AI-in-telecom
┃ ┃ ┣ 📜Labelled_Multiclass.csv
┃ ┃ ┣ 📜theor.pdf
┃ ┃ ┗ 📜XAI-failure-management-microwave.ipynb
┃ ┗ 📜README.md
┣ 📂NM-lab
┃ ┣ 📂1-Active-measurements
┃ ┃ ┣ 📜iperf3.ipynb
┃ ┃ ┣ 📜ping-traceroute.ipynb
┃ ┃ ┗ 📜snmp.ipynb
┃ ┣ 📂2-Passive-measurements
┃ ┃ ┣ 📜data-visualization.ipynb
┃ ┃ ┣ 📜LTE_measurements.csv
┃ ┃ ┣ 📜RTT_measurements.csv
┃ ┃ ┗ 📜tcpdump-example.ipynb
┃ ┣ 📂3-Traffic-classification
┃ ┃ ┣ 📜traffic-classification.ipynb
┃ ┃ ┗ 📜traffic_captures.zip
┃ ┣ 📂4-WiFi-sniffing
┃ ┃ ┣ 📜capture_10_36_mon_5.pcapng
┃ ┃ ┣ 📜fingerprint_files.zip
┃ ┃ ┣ 📜probe-analysis1.ipynb
┃ ┃ ┣ 📜probe-analysis2.ipynb
┃ ┃ ┣ 📜test_files.zip
┃ ┃ ┗ 📜wifi-localization.ipynb
┃ ┣ 📂5-Video-streaming-monitoring
┃ ┃ ┣ 📜dns_pcap_yt_s_1_1005.pcap.log
┃ ┃ ┣ 📜LiveCapturingTool.py
┃ ┃ ┣ 📜Live_Capture_NetLabMeas.csv
┃ ┃ ┣ 📜min_out_pcap_yt_s_1_1005.pcap.log
┃ ┃ ┣ 📜requests_yt_s_1_1005.log
┃ ┃ ┣ 📜video-traffic-monitoring.ipynb
┃ ┃ ┗ 📜yt_s_1_1005.log
┃ ┗ 📂Assignments
┃ ┃ ┣ 📂HW1-Active-Measurements
┃ ┃ ┃ ┣ 📜assignment1.ipynb
┃ ┃ ┃ ┗ 📜HW1.pdf
┃ ┃ ┣ 📂HW2-Fingerprinting
┃ ┃ ┃ ┣ 📜assignment2.ipynb
┃ ┃ ┃ ┣ 📜data_hw2.zip
┃ ┃ ┃ ┣ 📜data_hw2_new.zip
┃ ┃ ┃ ┣ 📜get_data.sh
┃ ┃ ┃ ┗ 📜HW2.pdf
┃ ┃ ┗ 📂HW3-HTTP-Request-Arrival-Estimation
┃ ┃ ┃ ┣ 📜assignment3.ipynb
┃ ┃ ┃ ┣ 📜Captures_HW3.zip
┃ ┃ ┃ ┗ 📜HW3.pdf
┃ ┗ 📜README.md
┣ 📂Project
┃ ┣ 📂data
┃ ┃ ┣ 📜dataset-tl.zip
┃ ┃ ┗ 📜dataset.zip
┃ ┣ 📜anomaly_detection-cov_features.ipynb
┃ ┣ 📜anomaly_detection-main.ipynb
┃ ┣ 📜Project.pdf
┃ ┣ 📜Report.pdf
┃ ┗ 📜README.md
┣ 📜LICENSE
┗ 📜README.md
The folder contains the files for the project Anomaly Detection in Optical Transponders done during the Network Data Analysis part of the course. For the project, we used the following methods and methodologies:
- One-Class SVM
- Isolation Forest
- Principal Component Analysis (PCA)
- Transfer Learning & Domain Adaptation
- Explainable AI (GradCAM XAI)
The folder contains the main files covered during the Network Data Analysis part of the course. The main topics include
- Traffic prediction for network design and reconfiguration. Traffic pattern identification.
- Network failure management. Overview of network failure management. Quality of Transmission (QoT) estimation.
- Failure detection, cause-identification and localization. Applications in optical and microwave networks.
The folder contains the main files covered during the Network Measurements part of the course. The main topics include
- Overview of network measurements. Instruments for data collection. Visualization techniques for network measurements.
- Traffic classification and intrusion detection Encrypted traffic classification. Network intrusion and detection systems.
- Wi-Fi sniffing: single-point sniffing (occupancy detection, device classification), multi-point sniffing (localization, user profiling, flow estimation)
- Video streaming analysis: Network operators generally use resource optimization techniques to guarantee streaming requirements efficiently.