使用CycleGAN网络模型实现无匹配数据的风格迁移,将真实人脸图片转换为漫画头像,主要参考了这篇博客。
名称 | 版本 |
---|---|
GPU | GeForce GTX 1080 Ti |
CUDA | 9.0 |
CUDNN | 7.1.4 |
Python | 3.6.4 |
tensorflow-gpu | 1.9.0 |
torch | 1.1.0 |
torchvision | 0.3.0 |
face-alignment | 1.0.0 |
dlib | 19.17.0 |
numpy | 1.18.4 |
opencv-python | 4.1.0.25 |
train.py进行模型的训练
test.py测试模型的转换效果
junyanz/CycleGAN仓库
J. Zhu, T. Park, P. Isola and A. A. Efros, "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 2017, pp. 2242-2251, doi: 10.1109/ICCV.2017.244.
https://blog.csdn.net/dqcfkyqdxym3f8rb0/article/details/106030098
https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/79557699
https://blog.csdn.net/syysyf99/article/details/100120952
https://blog.csdn.net/liongxiong/article/details/80875885
https://blog.csdn.net/yxpandjay/article/details/90369947
https://blog.csdn.net/m0_37605642/article/details/98854753
https://blog.csdn.net/sunmingyang1987/article/details/102872658