Skip to content

A simple fully connected feed forward neural network written in python from scratch using numpy & optimized using numba. It is possible to have multiple hidden layers, change amount of neurons per layer & have a different activation function per layer.

Notifications You must be signed in to change notification settings

Capsar/python-neural-network

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

python-neural-network

A simple fully connected feed forward neural network written in python from scratch using numpy. It is possible to have multiple hidden layers, change the amount of neurons per layer & have a different activation function per layer.

Written in python 3.7.7

If you have any tips on how to imporve performace, let me know!

import numpy as np
from numba.experimental import jitclass
from numba import types, typed
data_input = np.load("data/ci_inputs.npy")
data_output = np.load("data/ci_outputs.npy")

print("Begin compiling!")
begin_time = time.time_ns()
compile_nn = make_neural_network(layer_sizes=[data_input.shape[1], data_output.shape[1]], layer_activations=["sigmoid"])
compile_nn.train(data_input[:1], data_output[:1], data_input[1: 2], data_output[1: 2])
end_time = time.time_ns()
print("Compile time:", (end_time-begin_time) / 1e9)

for i in range(10):

    random_seed = np.random.randint(10, 1010)
    np.random.seed(random_seed)

    train_input, validate_input, test_input = h.kfold(4, data_input, random_seed)
    train_output, validate_output, test_output = h.kfold(4, data_output, random_seed)

    nn = make_neural_network(layer_sizes=[train_input.shape[1], 20, train_output.shape[1]], layer_activations=["sigmoid", "sigmoid"])

    begin_time = time.time_ns()
    epochs, current_mse = nn.train(train_input, train_output, validate_input, validate_output)
    end_time = time.time_ns()

    train_mse = nn.calculate_MSE(train_input, train_output)
    test_mse = nn.calculate_MSE(test_input, test_output)

    accuracy_test = nn.evaluate(test_input, test_output)
    print("Seed:", random_seed, "Epochs:", epochs, "Time:", (end_time-begin_time)/1e9, "Accuracy:", accuracy_test, "Tr:", train_mse, "V:", current_mse, "T:", test_mse)

About

A simple fully connected feed forward neural network written in python from scratch using numpy & optimized using numba. It is possible to have multiple hidden layers, change amount of neurons per layer & have a different activation function per layer.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages