Skip to content

Pytorch implementations of each of the models described in the paper "Very Deep Convolutional Networks for Large-Scale Image Recognition" by Karen Simonyan, Andrew Zisserman

Notifications You must be signed in to change notification settings

CellEight/PytorchVGGNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PytorchVGGNet

Background

Pytorch implementations of each of the models (usally referred to as the VGG models) described in the paper "Very Deep Convolutional Networks for Large-Scale Image Recognition" by Karen Simonyan, Andrew Zisserman

The Architectures

This repository contains code for each of the 6 different architectures described in the paper. The structure of these different models is described in the following table pulled from the paper.

The VGG Architecture Tables

Dataset

In the paper the authors train the model on the ImageNet dataset which is a huge data set of images of objects in 1000 different classes and was used as part of the ImageNet competition which until recently was the main forum of comparison between state of the art image recognition models. Although this model is absolutely capable of being applied to the full image net dataset I do not recommend this as it is VERY large, approximately 138GB. Instead, if you wish to train the model yourself, I recommend either using the sample data set in the /data directory of the repo which is just a small subset of 11 classes taken from the ImageNet data set or downloading your own subset using the ImageNet Downloader project and then using imagemagick and the converter script included in this repo to get the images the correct size and training with that. If you really want to train with all of ImageNet you can find a few different methods of acquiring it here.

Pretrained Weights

If you lack a graphics card on which to train the model or you just don't want to go through the hassle of training it yourself I have uploaded a .pkl file containing a serialized version of the model trained on the included dataset. You can find it here.

Requirements

All you need to run this code are the torch and torchvision libraries. To install these just run the following command in the root of your local copy of the repo. Do bear in mind though that you may wish to visit the pytorch website to download the most appropriate versions for your system.

sudo pip3 install -r ./requirements.txt

About

Pytorch implementations of each of the models described in the paper "Very Deep Convolutional Networks for Large-Scale Image Recognition" by Karen Simonyan, Andrew Zisserman

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages