Skip to content

DES, 3DES & CBC 模式的详细解释和他们代码的具体实现

Notifications You must be signed in to change notification settings

Chang-LeHung/DES

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DES 加密详解

DES explanation in Java 本项目是使用java语言实现DES,3DES加密算法,使用CBC模式实现加密文件,并做成了软件mybox,并提供了源码实现,如果你对它感兴趣也可以那它进行加密测试,或者仔细查看源码文件,如果想进行源码实现,请重点阅读DES.java文件。 如果你对DES, 3DES, CBC模式不熟悉请先阅读下面的文档或者它的pdf形式,在这里提供了对DES, 3DES, CBC模式详细解释,供大家参考。

mybox 使用方法如下

  • 查看帮助文档
    .\mymybox-64-bit.exe
    或者
    .\mymybox-64-bit.exe -help
    
    结果如下,加密时需要提供3个密钥和初始化向量,都是十六位的十进制数,即提供了加密需要的64位01二进制数
    ############################### MyBox ##################################
    ### Description:                                                    ###
    ### Software MyBox was Written by Mr. HuChang in Java on 10/27/2020 ###
     _____________
    < @牧牛的铃铛 >
     -------------
            \   ^__^
             \  (oo)\_______
                (__)\       )\/\
                    ||---- w|
                    ||     ||
    Usage mybox:
     mybox [FILED] ... [STRING] ...
       -key1        --first secret key
                        default=0123456789abcdef
       -output      --output file path
                        default=mybox
       -input       --input file path
                        default=null
       -iv  --initialization vector of CBC encryption mode
                        default=0123456789abcdef
       -key2        --second secret key
                        default=0123456789abcdef
       -key3        --third secret key
                        default=0123456789abcdef
       -mode        --encrypt or decrypt
                        default=en
    
  • 加密示例
    .\mybox-64-bit.exe -input .\README.md -key1 0123456789abcdef -key2 0123456789abcdef -key3 0123456789abcdef -iv 0123456789abcdef -mode encrypt -output result
    
  • 解密示例
    .\mybox-64-bit.exe -input .\result.mybox -key1 0123456789abcdef -key2 0123456789abcdef -key3 0123456789abcdef -iv 0123456789abcdef -mode decrypt -output ans.md
    

DES,CBC模式,3DES详解如下

如果查看不了下面的图片文档,请参考Image show进行解决

DES算法——从小白到登堂入室

从字符串信息到01比特数

首先什么是加密?加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的内容。(百度百科)

简单来说比如像下面这样:原文经过加密算法之后被加密成密文。

image-20201110204711992

原文被加密成密文之后意义发生了改变窃听者就不能发现消息内容,这正是加密信息的意义。计算机中的信息在经过物理层的时候最终都会变成01比特流,加密也正是基于比特流,如果想变成信息只需经过编码即可。例如想Java/Python将字符串或数字变成比特流。

Python将数字变成01字符

num = 100
print(bin(num)) # 0b1100100

其中1100100正是100的二进制数,如果我们自己来实现可以这样

def to_bits(num, length):
	return [num >> (length - i - 1) & 1 for i in range(length)]

num = 100
print(to_bits(num, 7)) # [1, 1, 0, 0, 1, 0, 0]

对于字符串来说首先得进行字符编码编码,具体如下:

s = "Hello World"

encoded = s.encode("utf-8") # 使用 UTF-8 对 s 进行编码,编码的结果便是数据

for num in encoded:
	print(num, end=" ")
# 72 101 108 108 111 32 87 111 114 108 100 

编码后的结果是数据(72 101 108 108 111 32 87 111 114 108 100),那么就可以使用上述方法将数字变成01比特数,把得到结果连接起来便得到了字符串的01比特流。

**DES(Data Encryption Standard)**是第一个广泛应用于商用数据保密的密码算法,虽然DES由于秘钥空间限制已经能被破解而被高级加密标准AES取代,但是它设计思想仍然有很重要的参考价值。下面就具体说明DES加密算法~~~

DES加密的关键过程主要有下面三个。

  • 由初始秘钥生成子秘钥
  • 轮函数
  • 置换

DES算法流程

首先从整体上来了解一下DES加密的流程。

image-20201112105800561

DES加密算法的明文的长度是确定的,是由640,1数字组成,秘钥也是如此由6401数字组成。

  • 首先明文经过**初始置换**得到初始置换后的信息T

    • 进行**初始置换**首先需要一张初始置换表,如下

      public static byte[][] initIPSub = {
                  {58, 50, 42, 34, 26, 18, 10, 2},
                  {60, 52, 44, 36, 28, 20, 12, 4},
                  {62, 54, 46, 38, 30, 22, 14, 6},
                  {64, 56, 48, 40, 32, 24, 16, 8},
                  {57, 49, 41, 33, 25, 17, 9 , 1},
                  {59, 51, 43, 35, 27, 19, 11, 3},
                  {61, 53, 45, 37, 29, 21, 13, 5},
                  {63, 55, 47, 39, 31, 23, 15, 7}
        };

      一共8864个数。置换规则 (第i行第j列,原文为 M 置换结果为 T,初始置换表为 I): $T_{(i * 8 + j + 1)}=M_{I[i][j]}$i, j0开始。

      例如第一行第一列58,即原文的M58位为置换后的信息T的第一位,第二列:原文M50位为T的第二位,以此类推......

      image-20201111001820006

  • 16轮运算,由于16轮运算比较复杂稍微再进行详解。

  • **初始逆置换**和初始置换表一样,都是8x8的置换表,只是置换表内容发生了变化,除此之外其余步骤一样。

    • **初始逆置换**表

      public static byte[][] initIPInverseSub = {
                  {40, 8, 48, 16, 56, 24, 64, 32},
                  {39, 7, 47, 15, 55, 23, 63, 31},
                  {38, 6, 46, 14, 54, 22, 62, 30},
                  {37, 5, 45, 13, 53, 21, 61, 29},
                  {36, 4, 44, 12, 52, 20, 60, 28},
                  {35, 3, 43, 11, 51, 19, 59, 27},
                  {34, 2, 42, 10, 50, 18, 58, 26},
                  {33, 1, 41,  9, 49, 17, 57, 25}
          };

秘钥生成

在之后进行16轮轮函数运算时需要用到子秘钥,接下来将讲解具体的由初始秘钥生成子秘钥的过程。子秘钥生成流程图如下:

image-20201111211815836

由上图初始秘钥(64位,提供用来加密的秘钥,整个DES加密需要提供的就是 明文和秘钥)

  • 置换选择1

    置换还是和之前初始置换和初始置换一样,只是表不同而已,置换选择1所用到的表如下:

    public static byte[][] keySub1 = {
                {57, 49, 41, 33, 25, 17,  9},
                { 1, 58, 50, 42, 34, 26, 18},
                {10,  2, 59, 51, 43, 35, 27},
                {19, 11,  3, 60, 52, 44, 36},
                {63, 55, 47, 39, 31, 23, 15},
                { 7, 62, 54, 46, 38, 30, 22},
                {14,  6, 61, 53, 45, 37, 29},
                {21, 13,  5, 28, 20, 12,  4}
        };

    置换选择表1和之前的表不同的地方在于它是一个8x7的表,也就是说会将初始秘钥的64位变成56位,但是规则仍然是一样,只不过前面一共换了64位,这里只换56位而已。在进行初始置换之后再进行分割,将得到的56比特数字分割成左右两部分。

    image-20201111193003882

  • $LS_i$函数 $$ LS_i= \begin{cases} 循环左移一位, & \text{i $\in$ {1, 2, 9, 16}}\ 循环左移两位, & \text{i $\in$ {3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15}} \end{cases} $$

    循环左移示例

    image-20201111211259129

    每一个$C_i$和$D_i$都需要经过$LS_i$输出$C_{i+1}$和$D_{i + 1}$,并且$C_{i+1}$和$D_{i + 1}$将作为$LS_{i+1}$的输入得到$C_{i + 2}$和$D_{i+2}$以此类推......

  • 在经过$LS_{i}$函数之后得到$C_{i+1}$和$D_{i + 1}$将他们拼接成$C_{i+1}$$D_{i + 1}$再经过置换选择2得到一把子秘钥,置换规则和之前一样,置换选择2的内容如下:

    public static byte[][] keySub2 = {
                {14, 17, 11, 24,  1,  5},
                { 3, 28, 15,  6, 21, 10},
                {23, 19, 12,  4, 26,  8},
                {16,  7, 27, 20, 13,  2},
                {41, 52, 31, 37, 47, 55},
                {30, 40, 51, 45, 33, 48},
                {44, 49, 39, 56, 34, 53},
                {46, 42, 50, 36, 29, 32}
      };

    这是一张8x6的表,也就是说只置换48次,置换的子钥是一个48位的比特数。

加密过程

在上面我们完成了==DES加密==过程中的==置换==和==子秘钥生成==了,接下就开始具体了解加密过程了。首先我们将经过初始置换后的T分成左右两个部分,拆分方法和上面秘钥经过置换选择1的分法一样,只不过位数发生了变化,将T分成左右两部分L, R他们各占32位。其中: $$ L_0 = x_{1}^{'}x_{2}^{'}x_{3}^{'}...x_{30}^{'}x_{31}^{'}x_{32}^{'}\ R_0 = x_{33}^{'}x_{34}^{'}x_{35}^{'}...x_{62}^{'}x_{63}^{'}x_{64}^{'} $$ 然后就需要利用$L_0和R_0$进行16次的加密过程了,加密过程的算法如下,其中F是轮函数,它的输出一个32位的比特数之后会说明它的具体实现,$\bigoplus$是异或运算: $$ \begin{cases} L_i=R_{i-1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i = 1, 2, ..., 16\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ K_i是子秘钥生成过程中生成的第i把秘钥\ R_i=L_{i-1}\bigoplus F(R_{i-1}, K_i) \end{cases} $$ 加密流程图如下图所示:

image-20201112105846997

在经过16轮加密运算之后得到的$R_{16}, L_{16}$都是32位的比特数,将他们拼接成$R_{16} L_{16}$,==注意不是$L_{16} R_{16}$,而是$R_{16} L_{16}$==。在经过初始逆置换(具体可以查看最开始的DES加密流程图)就可以得到密文了。

轮函数

根据上面很容易知道,在进行加密的时候对信息$L_i, R_i$的迭代需要使用到轮函数$F$,接下来对它进行详解。轮函数流程图如下:

image-20201112110125546

根据公式: $$ \begin{cases} L_i=R_{i-1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i = 1, 2, ..., 16\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ K_i是子秘钥生成过程中生成的第i把秘钥\ R_i=L_{i-1}\bigoplus F(R_{i-1}, K_i) \end{cases} $$ 轮函数的输入是$R_{i - 1}和K_i$,首先$R_{i - 1}$通过==扩展置换==由32变成48位,扩展置换也和之前的置换方式一致,它也有它的置换表,如下:

public static byte[][] extendsTable = {
            {32,  1,  2,  3,  4,  5},
            { 4,  5,  6,  7,  8,  9},
            { 8,  9, 10, 11, 12, 13},
            {12, 13, 14, 15, 16, 17},
            {16, 17, 18, 19, 20, 21},
            {20, 21, 22, 23, 24, 25},
            {24, 25, 26, 27, 28, 29},
            {28, 29, 30, 31, 32,  1}
    };

一共86列,因此置换结果有48位。扩展置换得到结果再与48为的子秘钥$K_i$进行异或运算,得到一个新的48位的结果,下面就需要将得到的48为的结果分解成8份,每份含有6位的比特数,分割方式如下:

image-20201112113539518

这里的$S_i$统称为$S盒$,一共8,每个$S$的输出是一个4位的比特数,范围就是:0000 ~ 1111,十进制表示就是从015。那么$S$盒是如何映射的呢?

首先先来了解$S$的结构,一共8个盒,每个盒的构成都一样,均为行为4列为16的表,具体如下:

public static byte[][] S1 = {
            {14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7},
            {0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8},
            {4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0},
            {15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}
    };
    public static byte[][] S2 = {
            {15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10},
            {3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5},
            {0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15},
            {13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}
    };
    public static byte[][] S3 = {
            {10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8},
            {13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1},
            {13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7},
            {1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}
    };
    public static byte[][] S4 = {
            {7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15},
            {13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9},
            {10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4},
            {3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}
    };
    public static byte[][] S5 = {
            {2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9},
            {14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6},
            {4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14},
            {11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}
    };
    public static byte[][] S6 = {
            {12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11},
            {10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8},
            {9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6},
            {4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}
    };
    public static byte[][] S7 = {
            {4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1},
            {13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6},
            {1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2},
            {6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}
    };
    public static byte[][] S8 = {
            {13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7},
            {1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2},
            {7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8},
            {2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}
    };

所有数的范围都是0~15,现在就是需要从每一个对应的$S$盒中找到要输出的数,然后将他转成二进制的形式输出。从表中找一个数就需要行和列,每个$S$的输入都是6个二进制数,取首尾两个数组成行的二进制数,范围在0~3,中间四位二进制数组成列范围在0~15,如下如所示:

image-20201112114515377

举个例子:输入为110110,则行为10=2,列为1011=11==(下标从0开始,对应表的第三行第12列)==

经过$S$盒的结果在通过==$P$盒置换==就可以得到最终的$F$函数的输出结果了,$P$盒置置换还是盒之前一样,只是换了一张表而已,$P$盒置换的表如下图所示:

public static byte[][] P = {
            {16,  7, 20, 21},
            {29, 12, 28, 17},
            { 1, 15, 23, 26},
            { 5, 18, 31, 10},
            { 2,  8, 24, 14},
            {32, 27,  3,  9},
            {19, 13, 30,  6},
            {22, 11,  4, 25}
    };

以上就是DES加密的全部内容了,再来重新理一下思路:

  • 工具准备——子密钥生成。
  • 明文经过初始置换。
  • 置换的结果先分割成左右两部分,在进行十六轮迭代,最终合并得到结果,这一步的主要目的是:==混淆和扩散==,让信息扩散开来。
  • 最后经过初始逆置换得到最终的密文。

DES解密

==DES解密==过程和加密过程完全一样,只不过在子密钥的使用上稍微有点不同,加密的时候子密钥是从第一把使用到第十六把,而解密是从第十六把用到第一把,完全相反的步骤,除此之外其余步骤一模一样,步骤如下:

  • 密文经过初始置换。
  • 置换的结果先分割成左右两部分,在进行十六轮迭代,密钥使用顺序相反。
  • 最后经过初始逆置换得到最初的明文。

填充模式

前文我们已经知道在==DES加密==过程中,使用的密钥和明文都是64位的,也就是8byte但是如果我们需要加密的信息不满足8byte的整数倍怎么办呢?

那就进行填充,如果待加密的信息大小是Mbytes,填充kbyte, 这kbyte都填充为0(即二进制为00000000),这样我们在得到解密的时候如果后面的byte结果为0则丢掉它。 $$ M % 8 = m\ \ \ k = \begin{cases} 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if \ m == 0;\ 8 - m \ \ \ \ \ \ \ if \ m \ != 0; \end{cases} $$ 除了填充之外,还需要知道一共填充了多少位,因为可能原文中最后一个byte的结果可能是0,即和我们填充的一样,如果不记录填充长度的话,会误将它归结为填充字段,解密结果就会缺失一部分数据,为此我们可以再增加64位用来记录填充的byte数目,即将$k$变成64位二进制数加载填充数据后面,举个例子,如果待加密的信息最后一组(每组64位)的长度位32位,则填充情况如下:

image-20201112174041591

这样我们在解密完成之后读取最后一组信息(即最后64位)的到填充长度k,则原文信息就是去掉最后64位之后再从后往前去掉kbyte就能得到原文了。

CBC工作模式

通常情况下我们需要加密的信息可能是一个文件,也可能是其他比较大的信息。当消息的长度大于分组的长度(64)时,需要分成几个分组分别进行处理,于是就有了分组密码的工作模式,接下来主要介绍其中的一种工作模式==CBC加密模式==

CBC加密模式主要流程如下图所示:

image-20201112174535540

在CBC模式中,首先需要进行分组,将待加密的消息分成N组,如果最后一组没有满足64位则进行填充,除此之外,在CBC模式中还有一个初始化向量,它是一个64位的二进制数,它首先跟明文分组P1进行异或运算,然后使用DES算法对异或得到的结果进行加密得到密文分组C1,然后密文分组C1和明文分组P2进行异或运算,得到的结果再进行DES加密得到密文分组C2,然后密文分组C2再和明文分组P3进行异或运算......,最终得到N个密文分组。

CBC解密模式主要流程如下图所示:

image-20201112175454850

CBC模式解密就时加密的逆过程根据上图很容易理解,这里不再进行赘述。

Triple DES

从上面可以知道DES加密的密钥长度为64,实际上这个长度还不够,已经能被暴力破解,为了增加密钥的长度于是就诞生了3DES, 在了解DES之后,==Triple DES==就非常简单了,它的具体工作流程如下图所示:

image-20201112181017579

上述就是3DES加密过程,解密将其反过来就行,即:

image-20201112181149783

以上就是DES算法的全部内容~~~~

About

DES, 3DES & CBC 模式的详细解释和他们代码的具体实现

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages