Skip to content

ChenDanCMU/clustereval

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 

Repository files navigation

clustereval

Easy clustering evaluation in MATLAB.
Copyright (c) 2015 Taehoon Lee

Usage

Input arguments are two clustering results and metric name.
clustereval(a, b, 'metric name')

Example Code

X = rand(100, 2);
Z = linkage(X, 'average', 'euclidean');
a = cluster(Z, 'maxclust', 4);
b = kmeans(X, 4);
clustereval(a, b, 'ari') % adjusted Rand index

Implemented Metrics

  • `ri`: the Rand Index
  • Rand, "Objective Criteria for the Evaluation of Clustering Methods", *JASA*, 1971.
  • `mi`: the Mirkin index
  • `hi`: the Hubert index
  • `ari`: adjusted Rand index
  • Hubert and Arabie, "Comparing partitions", *Journal of Classification*, 1985.
  • `fowlkes`: the Fowlkes-Mallows index
  • Fowlkes and Mallows, "A Method for Comparing Two Hierarchical Clustering", *JASA*, 1983.
  • `chi`: Pearson's chi-square test
  • Chernoff and Lehmann, "The Use of Maximum Likelihood Estimates in \chi^2 Tests for Goodness of Fit", *AMS*, 1954.
  • `cramer`: Cramer's coefficient
  • `tchouproff`: Tchouproff's coefficient
  • `moc`: the Measure of Concordance
  • Pfitzner et al., "Characterization and evaluation of similaritymeasures for pairs of clusterings", *KIS*, 2009.
  • `nmi`: Normalized Mutual Index
  • Strehl and Ghosh, "Cluster ensembles - a knowledge reuse framework for combining multiple partitions", *JMLR*, 2002.

    About

    Easy clustering evaluation in MATLAB

    Resources

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published

    Languages

    • MATLAB 100.0%