This repository is an official PyTorch implementation of the paper "Personalized Retrogress-Resilient Federated Learning Towards Imbalanced Medical Data" [paper] from IEEE Transactions on Medical Imaging (TMI) 2022.
The dermoscopic FL dataset can be downloaded from Google Drive. Put the downloaded clientA
, clientB
, clientC
and clientD
subfolders in a newly-built folder ./data/
.
- Python 3.7
- PyTorch >= 1.7.0
- numpy 1.19.4
- scikit-learn 0.24.2
- scipy 1.6.2
- albumentations 0.5.2
Clone this repository into any place you want.
git clone https://github.com/CityU-AIM-Group/PRR-Imbalance.git
cd PRR-Imbalance
mkdir data
- Train the PRR-Imbalance with default settings:
python ./main.py --theme prr-imbalance --iters 50 --wk_iters 5 --network vgg_nb --l_rate 0.7 --lr 1e-2
If you find our work useful in your research or publication, please cite our work:
@ARTICLE{2022personalizedFL,
title={Personalized Retrogress-Resilient Federated Learning Towards Imbalanced Medical Data},
author={Chen, Zhen and Yang, Chen and Zhu, Meilu and Peng, Zhe and Yuan, Yixuan},
journal={IEEE Transactions on Medical Imaging},
year={2022},
pages={1-1},
doi={10.1109/TMI.2022.3192483}
}