This project provides a complete pipeline to scrape, process, predict, and optimize fantasy cricket teams for the Indian T20 League (IPL) using machine learning and linear programming.
It includes:
✅ Real-time player data scraping from ESPN Cricinfo
✅ Merging with historical batting, bowling, and venue performance data
✅ Training an XGBoost regression model to predict fantasy points
✅ Optimizing team selection under realistic rules
✅ Generating a recommended playing XI with captain and vice-captain
✅ Docker support for easy deployment
fantasy-cricket-optimizer/
├── satte.py
├── requirements.txt
├── Dockerfile
├── .gitignore
├── .gitattributes
├── LICENSE
├── README.md
├── data/
│ ├── Final_batter_ipl.csv
│ ├── bowler_ipl.csv
│ ├── wicketkeeper_ipl.csv
│ ├── batter_vs_bowler_head_to_head_2024.csv
│ ├── batter_venue_stats_2023_2024.csv
│ ├── bowler_performance_by_venue_2023_2024.csv
│ ├── teamwise_home_and_away.csv
│ ├── player_credits.csv
│ ├── Match_day_stadium.csv
│ └── SquadPlayerNames_IndianT20League.xlsx
├── models/
│ └── xgb_fantasy_model.pkl (generated after training)
└── outputs/
└── FantasyPredictors_output.csv