-
Notifications
You must be signed in to change notification settings - Fork 0
Module : Spikeless Pooled Normalization
Jaze8 edited this page Nov 9, 2018
·
8 revisions
This module estimates size factors for each cell (check the scran paper for a detailed account of the procedure).
-
Internal name : scpoolednormalization
-
Avalaible : local mode
-
Input Ports :
- sce_object : SingleCellExperiment object (rds)
-
Output Ports :
- cellsoutput : normalized cells metadata (tsv)
-
Optional parameters :
Parameter | Type | Description | Default Value |
---|---|---|---|
mode | string | Use All, Endogenous, or Nuclear genes | Nuclear |
color_by | string | Name of the column from the design file to use for cell plotting | Condition |
precluster | boolean | Whether to precluster cells or not (can decrease computation time, useful for large datasets) | FALSE |
min_cluster_size | int | Minimum number of cells per cluster (at most half of the total number of cells) | 100 |
force_positive | boolean | Whether to force for positive size factor values or not | FALSE |
detection | int | Threshold to consider a gene expressed (used for gene filtering before normalizing) | 1 |
n_cells | int | Expression threshold across cells to keep a gene (used for gene filtering before normalizing) | 1 |
length_correction | boolean | Whether to correct for feature length or not before plotting (increases computation time) | FALSE |
cell_cycle | boolean | Whether to annotate cells for cell cycle or not (only available for human and mouse cells) | FALSE |
organism | string | Organism for cell cycle annotation (mus_musculus or homo_sapiens) | mus_musculus |
- Configuration example
<step id="normalization" skip="false">
<module>scpoolednormalization</module>
<parameters>
<parameter>
<name>mode</name>
<value>Endogenous</value>
</parameter>
<parameter>
<name>precluster</name>
<value>FALSE</value>
</parameter>
<parameter>
<name>cell_cycle</name>
<value>FALSE</value>
</parameter>
</parameters>
</step>