Skip to content

Module : Spikeless Pooled Normalization

Jaze8 edited this page Jun 7, 2018 · 8 revisions

Module : Spikeless Pooled Normalization

This module estimates size factors for all cells.

  • Internal name : scpoolednormalization

  • Avalaible : local mode

  • Input Ports :

    • matrix : filtered expression matrix (tsv)
    • cells : filtered cells metadata (tsv)
    • genes : features metadata (tsv)
  • Output Ports :

    • cellsoutput : normalized cells metadata (tsv)
  • Optional parameters :

Parameter Type Description Default Value
mode string Use Endogenous or Nuclear genes Endogenous
color_by string Name of the column from the design file to use for cell plotting Condition
precluster boolean Whether to precluster cells or not (can decrease computation time) FALSE
min_cluster_size int Minimum number of cell per cluster (at most half of the number of cells) 100
force_positive boolean Whether to force for positive size factor values or not False
detection int Detection threshold to consider a gene expressed, used for gene filtering before normalizing 1
n_cells int Number of detection to keep a gene, used for gene filtering before normalizing 1
length_correction boolean Whether to correct for feature length or not before plotting (increases computation time) False
cell_cycle boolean Whether to annotate cells for cell cycle or not (only for human and mouse cells) False
organism string Organism for cell cycle annotation, should be one of : mus_musculus or homo_ sapiens mus_musculus
  • Configuration example
<step id="normalization" skip="false">
        <module>scpoolednormalization</module>
        <parameters>
           <parameter>
              <name>mode</name>
              <value>Endogenous</value>
           </parameter>
           <parameter>
              <name>precluster</name>
              <value>False</value>
           </parameter>
           <parameter>
              <name>cell_cycle</name>
              <value>False</value>
           </parameter>
        </parameters>
</step>