-
Notifications
You must be signed in to change notification settings - Fork 0
Module : Spikeless Pooled Normalization
Jaze8 edited this page Jun 7, 2018
·
8 revisions
This module estimates size factors for all cells.
-
Internal name : scpoolednormalization
-
Avalaible : local mode
-
Input Ports :
- matrix : filtered expression matrix (tsv)
- cells : filtered cells metadata (tsv)
- genes : features metadata (tsv)
-
Output Ports :
- cellsoutput : normalized cells metadata (tsv)
-
Optional parameters :
Parameter | Type | Description | Default Value |
---|---|---|---|
mode | string | Use Endogenous or Nuclear genes | Endogenous |
color_by | string | Name of the column from the design file to use for cell plotting | Condition |
precluster | boolean | Whether to precluster cells or not (can decrease computation time) | FALSE |
min_cluster_size | int | Minimum number of cell per cluster (at most half of the number of cells) | 100 |
force_positive | boolean | Whether to force for positive size factor values or not | False |
detection | int | Detection threshold to consider a gene expressed, used for gene filtering before normalizing | 1 |
n_cells | int | Number of detection to keep a gene, used for gene filtering before normalizing | 1 |
length_correction | boolean | Whether to correct for feature length or not before plotting (increases computation time) | False |
cell_cycle | boolean | Whether to annotate cells for cell cycle or not (only for human and mouse cells) | False |
organism | string | Organism for cell cycle annotation, should be one of : mus_musculus or homo_ sapiens | mus_musculus |
- Configuration example
<step id="normalization" skip="false">
<module>scpoolednormalization</module>
<parameters>
<parameter>
<name>mode</name>
<value>Endogenous</value>
</parameter>
<parameter>
<name>precluster</name>
<value>False</value>
</parameter>
<parameter>
<name>cell_cycle</name>
<value>False</value>
</parameter>
</parameters>
</step>