generated from sfarrens/pyralid-template
-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from austinpeel/tests
Add new tests
- Loading branch information
Showing
4 changed files
with
252 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -12,6 +12,7 @@ matrix: | |
branches: | ||
only: | ||
- master | ||
- tests | ||
|
||
# install package and dependencies | ||
install: | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
"""STARLET L1-NORM MODULE | ||
This module contains functions for computing the starlet l1norm | ||
as defined in Eq. (1) of https://arxiv.org/pdf/2101.01542.pdf. | ||
""" | ||
|
||
import numpy as np | ||
from astropy.stats import mad_std | ||
from lenspack.image.transforms import starlet2d | ||
|
||
|
||
def noise_coeff(image, nscales): | ||
"""Compute the noise coefficients :math:`\sigma^{e}_{j}` | ||
to get the estimate of the noise at the scale j | ||
following Starck and Murtagh (1998). | ||
Parameters | ||
---------- | ||
image : array_like | ||
Two-dimensional input image. | ||
nscales : int | ||
Number of wavelet scales to compute. Should not exceed log2(N), where | ||
N is the smaller of the two input dimensions. | ||
Returns | ||
------- | ||
coeff_j : numpy.ndarray | ||
Values of the standard deviation of the noise at scale j | ||
""" | ||
noise_sigma = np.random.randn(image.shape[0], image.shape[0]) | ||
noise_wavelet = starlet2d(noise_sigma, nscales) | ||
coeff_j = np.array([np.std(scale) for scale in noise_wavelet]) | ||
return coeff_j | ||
|
||
|
||
def get_l1norm_noisy(image, noise, nscales, nbins): | ||
"""Compute the starlet :math:`\ell_1`-norm of a noisy image | ||
following Eq. (1) of https://arxiv.org/abs/2101.01542. | ||
Parameters | ||
---------- | ||
image : array_like | ||
Two-dimensional input noiseless image. | ||
noise : array_like | ||
Two-dimensional input of the noise to be added to image | ||
nscales : int | ||
Number of wavelet scales to compute. Should not exceed log2(N), where | ||
N is the smaller of the two input dimensions. | ||
nbins : int | ||
Number of bins in S/N desired for the summary statistic | ||
Returns | ||
------- | ||
bins_snr, starlet_l1norm : tuple of 1D numpy arrays | ||
Bin centers in S/N and Starlet :math:`\ell_1`-norm of the noisy image | ||
""" | ||
|
||
# add noise to noiseless image | ||
image_noisy = image + noise | ||
# perform starlet decomposition | ||
image_starlet = starlet2d(image_noisy, nscales) | ||
# estimate of the noise | ||
noise_estimate = mad_std(image_noisy) | ||
coeff_j = noise_coeff(image, nscales) | ||
|
||
l1_coll = [] | ||
bins_coll = [] | ||
for image_j, std_co in zip(image_starlet, coeff_j): | ||
|
||
sigma_j = std_co * noise_estimate | ||
|
||
snr = image_j / sigma_j | ||
thresholds_snr = np.linspace(np.min(snr), np.max(snr), nbins + 1) | ||
bins_snr = 0.5 * (thresholds_snr[:-1] + thresholds_snr[1:]) | ||
digitized = np.digitize(snr, thresholds_snr) | ||
bin_l1_norm = [np.sum(np.abs(snr[digitized == i])) | ||
for i in range(1, len(thresholds_snr))] | ||
l1_coll.append(bin_l1_norm) | ||
bins_coll.append(bins_snr) | ||
return np.array(bins_coll), np.array(l1_coll) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
"""UNIT TESTS FOR IMAGE | ||
This module contains unit tests for the image module. | ||
""" | ||
|
||
from unittest import TestCase | ||
import numpy as np | ||
import numpy.testing as npt | ||
from lenspack.image.transforms import starlet2d, dct2d, idct2d | ||
|
||
|
||
class TransformsTestCase(TestCase): | ||
|
||
def setUp(self): | ||
|
||
self.nscales = 5 | ||
self.npix = 64 | ||
self.image = img = 10 * np.random.normal(size=(self.npix, self.npix)) | ||
spike = np.zeros_like(self.image) | ||
spike[self.npix // 2, self.npix // 2] = 1 | ||
self.spike = spike | ||
|
||
def tearDown(self): | ||
|
||
self.nscales = None | ||
self.npix = None | ||
self.image = None | ||
self.spike = None | ||
|
||
def test_starlet2d(self): | ||
|
||
# Test output shape of starlet transform | ||
wt = starlet2d(self.image, self.nscales) | ||
output_shape = (self.nscales + 1, self.npix, self.npix) | ||
npt.assert_equal(output_shape, wt.shape, | ||
err_msg="Incorrect starlet2d output shape.") | ||
|
||
# Test reconstruction | ||
rec = np.sum(wt, axis=0) | ||
npt.assert_allclose(rec, self.image, | ||
err_msg="Incorrect starlet reconstruction.") | ||
|
||
# Test wavelet filter norms | ||
wt_spike = starlet2d(self.spike, self.nscales) | ||
norms = np.sqrt(np.sum(wt_spike[:-1]**2, axis=(1, 2))) | ||
expected = [0.890796310279, 0.2006638510244, 0.0855075047534] | ||
if len(norms > 2): | ||
npt.assert_allclose(norms[:3], expected, | ||
err_msg="Incorrect filter norms.") | ||
|
||
def test_dct2d(self): | ||
|
||
# Test reconstruction | ||
dct = dct2d(self.image) | ||
rec = idct2d(dct) | ||
npt.assert_allclose(rec, self.image, | ||
err_msg="Incorrect DCT reconstruction.") | ||
|
||
# Test exceptions | ||
npt.assert_raises(Exception, dct2d, self.image[0]) | ||
npt.assert_raises(Exception, dct2d, self.image, 'symmetric') | ||
npt.assert_raises(Exception, idct2d, self.image[0]) | ||
npt.assert_raises(Exception, idct2d, self.image, 'symmetric') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
"""UNIT TESTS FOR IMAGE | ||
This module contains unit tests for the iamge module. | ||
""" | ||
|
||
from unittest import TestCase | ||
import numpy as np | ||
import numpy.testing as npt | ||
from scipy import stats | ||
from lenspack.stats import mad, skew, kurt, mu_n, kappa_n, fdr, hc | ||
|
||
|
||
class StatsTestCase(TestCase): | ||
|
||
def setUp(self): | ||
|
||
# [-5., -4., -3., ... 3., 4., 5.] | ||
self.array = np.arange(11.) - 5 | ||
|
||
def tearDown(self): | ||
|
||
self.array = None | ||
|
||
def test_mad(self): | ||
|
||
# Test output value | ||
npt.assert_equal(mad(self.array), 3.0, err_msg="Incorrect MAD value.") | ||
|
||
def test_skew(self): | ||
|
||
# Test output value and agreement with scipy | ||
npt.assert_equal(skew(self.array), 0, err_msg="Incorrect skew value.") | ||
npt.assert_equal(skew(self.array**2), 0.5661385170722978, | ||
err_msg="Incorrect skew value.") | ||
npt.assert_almost_equal(skew(self.array**2), stats.skew(self.array**2), | ||
decimal=15, | ||
err_msg="Does not match scipy.skew.") | ||
|
||
def test_kurt(self): | ||
|
||
# Test output value and agreement with scipy | ||
npt.assert_almost_equal(kurt(self.array), -1.22, | ||
decimal=15, | ||
err_msg="Incorrect kurt value.") | ||
npt.assert_almost_equal(kurt(self.array), stats.kurtosis(self.array), | ||
decimal=15, | ||
err_msg="Does not match scipy.kurtosis.") | ||
|
||
def test_mu_n(self): | ||
|
||
# Test output value | ||
npt.assert_equal(mu_n(self.array, order=1), 0, | ||
err_msg="Incorrect mu_n for order 1.") | ||
npt.assert_equal(mu_n(self.array, order=2), 10, | ||
err_msg="Incorrect mu_n for order 2.") | ||
npt.assert_equal(mu_n(self.array, order=3), 0, | ||
err_msg="Incorrect mu_n for order 3.") | ||
npt.assert_equal(mu_n(self.array, order=4), 178, | ||
err_msg="Incorrect mu_n for order 4.") | ||
npt.assert_equal(mu_n(self.array, order=5), 0, | ||
err_msg="Incorrect mu_n for order 5.") | ||
npt.assert_equal(mu_n(self.array, order=6), 3730, | ||
err_msg="Incorrect mu_n for order 6.") | ||
|
||
# Test agreement with scipy | ||
npt.assert_equal(mu_n(self.array, order=1), | ||
stats.moment(self.array, moment=1), | ||
err_msg="Does not match scipy.moment for order 1.") | ||
npt.assert_equal(mu_n(self.array, order=2), | ||
stats.moment(self.array, moment=2), | ||
err_msg="Does not match scipy.moment for order 2.") | ||
npt.assert_equal(mu_n(self.array, order=3), | ||
stats.moment(self.array, moment=3), | ||
err_msg="Does not match scipy.moment for order 3.") | ||
npt.assert_equal(mu_n(self.array, order=4), | ||
stats.moment(self.array, moment=4), | ||
err_msg="Does not match scipy.moment for order 4.") | ||
npt.assert_equal(mu_n(self.array, order=5), | ||
stats.moment(self.array, moment=5), | ||
err_msg="Does not match scipy.moment for order 5.") | ||
npt.assert_equal(mu_n(self.array, order=6), | ||
stats.moment(self.array, moment=6), | ||
err_msg="Does not match scipy.moment for order 6.") | ||
|
||
# Test exceptions | ||
npt.assert_raises(Exception, mu_n, self.array, order=0) | ||
|
||
def test_kappa_n(self): | ||
|
||
# Test output value | ||
npt.assert_equal(kappa_n(self.array, order=2), 10, | ||
err_msg="Incorrect mu_n for order 2.") | ||
npt.assert_equal(kappa_n(self.array, order=3), 0, | ||
err_msg="Incorrect mu_n for order 3.") | ||
npt.assert_equal(kappa_n(self.array, order=4), -122, | ||
err_msg="Incorrect mu_n for order 4.") | ||
npt.assert_equal(kappa_n(self.array, order=5), 0, | ||
err_msg="Incorrect mu_n for order 5.") | ||
npt.assert_equal(kappa_n(self.array, order=6), 7030, | ||
err_msg="Incorrect mu_n for order 6.") | ||
|
||
# Test exceptions | ||
npt.assert_raises(Exception, kappa_n, self.array, order=1) |