Skip to content

Couchbase-Ecosystem/langchain-couchbase

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

langchain-couchbase

This package contains the LangChain integration with Couchbase

Installation

pip install -U langchain-couchbase

Vector Store

CouchbaseVectorStore class enables the usage of Couchbase for Vector Search.

from langchain_couchbase import CouchbaseVectorStore

To use this in an application:

import getpass

# Constants for the connection
COUCHBASE_CONNECTION_STRING = getpass.getpass(
    "Enter the connection string for the Couchbase cluster: "
)
DB_USERNAME = getpass.getpass("Enter the username for the Couchbase cluster: ")
DB_PASSWORD = getpass.getpass("Enter the password for the Couchbase cluster: ")

# Create Couchbase connection object
from datetime import timedelta

from couchbase.auth import PasswordAuthenticator
from couchbase.cluster import Cluster
from couchbase.options import ClusterOptions

auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)
options = ClusterOptions(auth)
cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)

# Wait until the cluster is ready for use.
cluster.wait_until_ready(timedelta(seconds=5))

vector_store = CouchbaseVectorStore(
    cluster=cluster,
    bucket_name=BUCKET_NAME,
    scope_name=SCOPE_NAME,
    collection_name=COLLECTION_NAME,
    embedding=my_embeddings,
    index_name=SEARCH_INDEX_NAME,
)

See a usage example

LLM Caches

CouchbaseCache

Use Couchbase as a cache for prompts and responses.

See a usage example.

To import this cache:

from langchain_couchbase.cache import CouchbaseCache

To use this cache with your LLMs:

from langchain_core.globals import set_llm_cache

cluster = couchbase_cluster_connection_object

set_llm_cache(
    CouchbaseCache(
        cluster=cluster,
        bucket_name=BUCKET_NAME,
        scope_name=SCOPE_NAME,
        collection_name=COLLECTION_NAME,
    )
)

CouchbaseSemanticCache

Semantic caching allows users to retrieve cached prompts based on the semantic similarity between the user input and previously cached inputs. Under the hood it uses Couchbase as both a cache and a vectorstore. The CouchbaseSemanticCache needs a Search Index defined to work. Please look at the usage example on how to set up the index.

See a usage example.

To import this cache:

from langchain_couchbase.cache import CouchbaseSemanticCache

To use this cache with your LLMs:

from langchain_core.globals import set_llm_cache

# use any embedding provider...

from langchain_openai.Embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()
cluster = couchbase_cluster_connection_object

set_llm_cache(
    CouchbaseSemanticCache(
        cluster=cluster,
        embedding = embeddings,
        bucket_name=BUCKET_NAME,
        scope_name=SCOPE_NAME,
        collection_name=COLLECTION_NAME,
        index_name=INDEX_NAME,
    )
)

Chat Message History

Use Couchbase as the storage for your chat messages.

See a usage example.

To use the chat message history in your applications:

from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory

message_history = CouchbaseChatMessageHistory(
cluster=cluster,
bucket_name=BUCKET_NAME,
scope_name=SCOPE_NAME,
collection_name=COLLECTION_NAME,
session_id="test-session",
)

message_history.add_user_message("hi!")