Wafer map defect pattern classification using Manual Feature Extraction
- Input: handcrafted features of wafer map
- 59-dim
- Output: predicted score
- Model: FNN (2-layer MLP)
- WM811K
-
811457 wafer maps collected from 46393 lots in real-world fabrication
-
172950 wafers were labeled by domain experts.
-
9 defect classes (Center, Donut, Edge-ring, Edge-local, Local, Random, Near-full, Scratch, None)
-
provided by MIR Lab (http://mirlab.org/dataset/public/)
-
.pkl file downloaded from Kaggle dataset (https://www.kaggle.com/qingyi/wm811k-wafer-map)
-
directory: /data/LSWMD.pkl
-
- Python 3.8
- Pytorch 1.9.1
- Pandas 1.3.2
- Scikit-learn 1.0.2
- OpenCV-python 4.5.3
- Scikit-image 0.18.3
- WM-811K(LSWMD). National Taiwan University Department of Computer Science Multimedia Information Retrieval LAB http://mirlab.org/dataSet/public/
- Wu, M. J., Jang, J. S. R., & Chen, J. L. (2014). Wafer map failure pattern recognition and similarity ranking for large-scale data sets. IEEE Transactions on Semiconductor Manufacturing, 28(1), 1-12.
- Fan, M., Wang, Q., & van der Waal, B. (2016, October). Wafer defect patterns recognition based on OPTICS and multi-label classification. In 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 912-915). IEEE.
- Saqlain, M., Jargalsaikhan, B., & Lee, J. Y. (2019). A voting ensemble classifier for wafer map defect patterns identification in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(2), 171-182.