Skip to content

Wafer map defect classification using handcrafted features (pytorch)

Notifications You must be signed in to change notification settings

DMkelllog/wafermap_handcrafted_features

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Wafer map pattern classification using Manual Feature Extraction

Wafer map defect pattern classification using Manual Feature Extraction

Methodology

Manual Feature Extraction (MFE)

  • Input: handcrafted features of wafer map
    • 59-dim
  • Output: predicted score
  • Model: FNN (2-layer MLP)

Data

Dependencies

  • Python 3.8
  • Pytorch 1.9.1
  • Pandas 1.3.2
  • Scikit-learn 1.0.2
  • OpenCV-python 4.5.3
  • Scikit-image 0.18.3

References

  • WM-811K(LSWMD). National Taiwan University Department of Computer Science Multimedia Information Retrieval LAB http://mirlab.org/dataSet/public/
  • Wu, M. J., Jang, J. S. R., & Chen, J. L. (2014). Wafer map failure pattern recognition and similarity ranking for large-scale data sets. IEEE Transactions on Semiconductor Manufacturing, 28(1), 1-12.
  • Fan, M., Wang, Q., & van der Waal, B. (2016, October). Wafer defect patterns recognition based on OPTICS and multi-label classification. In 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 912-915). IEEE.
  • Saqlain, M., Jargalsaikhan, B., & Lee, J. Y. (2019). A voting ensemble classifier for wafer map defect patterns identification in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(2), 171-182.

About

Wafer map defect classification using handcrafted features (pytorch)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages