Skip to content

The goal of this project is to become familiar with the binary heap data structure as well as different sorting techniques.

Notifications You must be signed in to change notification settings

DSA-2-labs/BinaryHeap-Sorting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implementing Binary Heap & Sorting Techniques

Contents:


1. Introduction

The goal of this assignment is to become familiar with the binary heap data structure as well as different sorting techniques.


2. Binary Heap

2.1 Introduction

The (binary) heap data structure is an array object that we can view as a nearly complete binary tree as shown in Figure 1. Each node of the tree corresponds to an element of the array. The tree is completely filled on all levels except possibly the lowest, which is filled from the left up to a point. An array A that represents a heap is an object with two attributes: A.length, which (as usual) gives the number of elements in the array, and A.heap-size, which represents how many elements in the heap are stored within array A.

image

Figure 1: A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle at each node in the tree is the value stored at that node. The number above a node is the corresponding index in the array. Above and below the array are lines showing parent-child relationships; parents are always to the left of their children. The tree has a height of three; the node at index 4 (with value 8) has a height of one. - figure from Introduction to Algorithms - 3rd Edition
There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds, the values in the nodes satisfy a heap property, the specifics of which depend on the kind of heap. In a max-heap, the max-heap property is that for every node i other than the root,
A[parent[i]] ≥ A[i]
That is, the value of a node is at most the value of its parent.

2.2 Implementation

The MAX-HEAPIFY procedure, which runs in O(lg n) time, is the key to maintaining the max-heap property.

  • The BUILD-MAX-HEAP procedure, which runs in linear time, produces a max-heap from an unordered input array.
  • The HEAPSORT procedure, which runs in O(n lg n) time, sorts an array in place.
  • The MAX-HEAP-INSERT, and HEAP-EXTRACT-MAX procedures, which run in O(lgn) time, allow the heap data structure to implement a priority queue.

3. Sorting Techniques

Implement the “heapsort” algorithm as an application for binary heaps. Then compare the running time performance of your algorithms against: – An O(n2) sorting algorithm such as Bubble Sort. – An O(n lg n) sorting algorithm such as Merge Sort in the average case. – An O(n) sorting algorithm such as Counting Sort.


4. Command Line Interface

Implement a command line interface that will enable us to deal with the implemented sorting algorithm. This interface must take the path of the file containing the list of elements as an initial input and then create the sorting object using it. The interface will be composed of a main menu that allow the user to sort the list of elements of the array. You should allow the user to choose 1 of the 3 algorithms to run. The user can ask for the sorted array or/and the intermediate array as well.


5. Comparison

5.1 Time & space analysis

Algorithm Time Complexity Space Complexity
Bubble sort O(n2) O(1)
Merge sort O(n log n) O(n)
Counting sort O(n + k) O(n + k)
Heap sort O(n log n) O(1)

5.2 Mean time to sort in (us):

firstly with large range of values:

Size Bubble sort Merge sort Counting sort Heap sort
10 2.047 3.075 82681.932 24.192
100 81.675 23.192 96230.662 18.56
103 636.72 47.337 85378 78.57
104 80862.29 846.207 88230 847.812
5x104 2682588.172 4706.2 89290 4406.2
105 1.2E7 9689.6 90127.27 12408.5
5x105 - 53433.4 111277 58023.8
106 - 122335.797 188044.09 128401.647
Mean Time 2460695 23885.6 103907.4 25526.16

image image

  • From the Time Analysis1 we notice that bubble sort O(n2) has the longest running time compared to the others.
  • From the Time Analysis2 we notice that merge sort and heap sort [O(n log n)] have approximately the same running, however, heap sort has slightly larger running times.
  • It’s clear that the counting sort has the longest running time, although that it has a linear time complexity O(n + k). This is because that the range of the values in the input arrays are significantly large. Counting sort is efficient when the range of these values is small. In the next comparison, a small range of values will be used to test the 4 algorithms again.

secondly with small range of values:

Size Bubble sort Merge sort Counting sort Heap sort
10 2.137 3.062 46.3 33.232
100 66.83 15.027 30.172 11.13
103 647.445 64.042 77.09 74.535
104 79020.807 979.85 225.06 844.527
5x104 2732834.765 4994.697 463.48 4687.337
105 1.13E7 12633.12 806.917 12891.622
5x105 - 62287.737 5220.942 64801.017
106 - 106934.79 8308.937 128925.347
Mean Time 2352095 23489.04 1897.362 26533.59

image image

  • From the Time Analysis3 we notice that bubble sort O(n2) still has the longest running time compared to the others.
  • From the Time Analysis4 we notice that counting sort O(n + k) has the best running time. The difference here is that the range of values in the input is significantly small [-5000 : 5000].

5.3 Where the algorithm will perform:

Bubble sort Merge sort Counting sort Heap sort
Worst case When the array is in reversed order, so the worst-case complexity is o(n2) When the array is in reversed order, so the worst-case complexity is O(nlogn) When the range of elements is not bounded or significantly larger than the number of elements. If the input array is already sorted in ascending order
Best case In case of already sorted array, so it just iterates in the list only one time. Thus, it is o(n) When the array already sorted, so the best-case complexity is O(nlogn) When all elements are the same. If the input array is already sorted in descending order
Average case Bubble sort may require (n/2) passes and O(n) comparisons for each pass in the average case. As a result, the average case time complexity of bubble sort is O (n2) When 2 or more elements are jumbled, i.e., neither in the ascending order nor in the descending order. The average-case complexity is O(nlogn) When the range of elements is bounded[k = O(n)] When the input array is randomly shuffled which doesn’t have any specific patterns or pre-existing order

About

The goal of this project is to become familiar with the binary heap data structure as well as different sorting techniques.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages