Repository that contains a Proof of Concept for the implementation of a Federated Learning framework.
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.
A step by step series that tell you how to get a development env running
git clone git@github.com:DeltaML/federated_aggregator.git
cd federated_aggregator/
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
gunicorn -b "0.0.0.0:8080" --chdir federated_aggregator/ wsgi:app --preload
docker build -t federated_aggregator --rm -f federated_aggregator/Dockerfile
docker run --rm -it -p 8080:8080 federated_aggregator
Script Path: .../federated_aggregator/virtualenv/bin/gunicorn
Parameters: -b "0.0.0.0:8080" wsgi:app --preload
Working directory: ../federated_aggregator
curl -v -H "Content-Type: application/json" -X POST "http://localhost:8080/dataowner"
curl -v -H "Content-Type: application/json" -X GET "http://localhost:8080/dataowner"
curl -v -H "Content-Type: application/json" -X POST -d '{"type": "LINEAR_REGRESSION", "call_back_endpoint": "URL_MODEL_BUYER", "call_back_port": 9090,"public_key": "XXXXXXXXXXXXXXXX"}' "http://localhost:8080/model"
ACTIVE_ENCRYPTION = False
N_ITER = 100 # El numero de iteraciones aceptables utilizando PheEncryption por ahora es 4
DATA_OWNER_PORT = 5000
- ACTIVE_ENCRYPTION: TODO
- N_ITER: TODO
- DATA_OWNER_PORT: TODO
We use SemVer for versioning. For the versions available, see the tags on this repository.
See also the list of contributors who participated in this project.
This project is licensed under the MIT License - see the LICENSE.md file for details