Automated finite element analysis workflow for studying stress concentrations in plates with circular holes under tensile loading
This project presents a comprehensive parametric study investigating stress concentration factors in aluminum plates with circular holes subjected to uniaxial tension. An automated Python-based workflow was developed to systematically analyze 125 geometric configurations, validating FEA results against Peterson's theoretical predictions with excellent accuracy (average error < 5%).
- Automated parametric FEA pipeline using FreeCAD and Python
- Mesh convergence study demonstrating solution stability (<2% variation)
- Theoretical validation against Peterson's stress concentration factor approximation
- Comprehensive visualization suite including heatmaps, Pareto plots
- Design optimization insights for weight-stress trade-offs
- Validate FEA methodology against established theoretical predictions
- Quantify the effects of geometric parameters (hole diameter, plate width, thickness) on stress concentration
- Develop a reusable computational workflow for parametric mechanical analysis
- Provide engineering design guidelines for perforated plate applications
Geometry:
- Rectangular aluminum plate (L × W × t)
- Center circular hole (diameter d)
- Fixed constraint on one end
- Tensile load P = 50 kN on opposite end
Material: Aluminum 6061-T6
- Young's Modulus: 69,000 MPa
- Poisson's Ratio: 0.33
- Yield Strength: 276 MPa
Parameter Ranges:
- Hole diameter (d): 10 - 50 mm (5 levels)
- Plate width (W): 60 - 200 mm (5 levels)
- Thickness (t): 5 - 15 mm (5 levels)
Nominal stress in net section:
σ_nom = P / ((W - d) × t)
Peterson's approximation for Kt:
K_t = 3 - 3.13(d/W) + 3.66(d/W)² - 1.53(d/W)³
Maximum stress:
σ_max = K_t × σ_nom
Four mesh refinement cases analyzed, demonstrating convergence:
| Case | Element Size | Max σvM (MPa) | Variation |
|---|---|---|---|
| 1 | 5.00 mm (Moderate) | 213 | -0.9% |
| 2 | 2.00 mm (Fine) | 217 | +0.9% |
| 3 | 5.00 mm (Fine on hole) | 213 | -0.9% |
| 4 | 3.00 mm (Fine) | 216 | +0.5% |
Average FEA result: 214.75 MPa
Theoretical prediction: 215 MPa
Selected mesh: 3.00 mm for optimal balance of accuracy and computational cost
parametric-fea/
├── README.md
├── requirements.txt
├── src/
│ ├── generate_results.py
│ └── analyze_params.py
│
├── models/
│ ├── plate_n.FCStd
│
├── data/
│ └── results_plate_hole_c.csv
│
└── plots/
├── kt_fea_vs_theory.png
├── stress_vs_holediameter.png
├── stress_vs_thickness.png
├── heatmap_stress.png
├── pareto_stress_vs_weight.png
- FreeCAD 0.20+: Download here
- Python 3.7+: Download here
- FreecadParametricFEA wrapper: GitHub repo
- Clone the repository:
git clone https://github.com/DennisxB/parametric-fea.git
cd parametric-fea-study- Install Python dependencies:
pip install -r requirements.txt- Configure FreeCAD path:
Edit src/generate_results.py and update:
FREECAD_PATH = "C:/FreeCAD-0.20/bin" # Adjust to your installationpython src/generate_results.pypython src/analyze_params.py- FEA vs Theory correlation: R² > 0.95
- Average Kt error: 3.94%
Stress increases sharply with hole diameter — doubling d can raise σmax by 3–5 times, with a critical point near d/W ≈ 0.5. Increasing plate width W reduces stress, and it’s more effective than increasing thickness, though gains taper off beyond W > 150 mm. Thickness t shows a simple, linear effect and doubling t roughly halves the peak stress, making it the most predictable parameter.
| d/W Ratio | Kt (Theory) | Kt (FEA) | Error (%) |
|---|---|---|---|
| 0.10 | 2.60 | 2.63 | 1.2 |
| 0.25 | 2.44 | 2.47 | 1.2 |
| 0.50 | 2.15 | 2.13 | -0.9 |
| 0.75 | 2.03 | 2.05 | 1.0 |
Contributions are welcome! Areas for improvement:
- Add support for non-circular holes (elliptical, rectangular)
- Implement multi-hole configurations
- Add fatigue life prediction
- Develop optimization algorithms (genetic algorithm, gradient-based)
- Create interactive Plotly dashboards
- Add experimental validation data
- Extend to composite materials
-
R. E. Peterson, Stress Concentration Factors. New York: Wiley, 1974.
-
W. D. Pilkey and D. F. Pilkey, Peterson's Stress Concentration Factors, 3rd ed. Hoboken, NJ: Wiley, 2008.
-
O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 6th ed. Oxford: Butterworth-Heinemann, 2005.
-
W. C. Young and R. G. Budynas, Roark's Formulas for Stress and Strain, 7th ed. New York: McGraw-Hill, 2002.
-
R. G. Budynas and J. K. Nisbett, Shigley's Mechanical Engineering Design, 9th ed. New York: McGraw-Hill, 2011.
-
FreeCAD Community, "FreeCAD: Your own 3D parametric modeler," 2021. [Online]. Available: https://www.freecadweb.org/



