Skip to content

DennisxB/parametric-fea

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Parametric FEA Analysis: Stress Concentration in Perforated Plates

Python 3.7+ FreeCAD 0.20+

Automated finite element analysis workflow for studying stress concentrations in plates with circular holes under tensile loading

Overview

This project presents a comprehensive parametric study investigating stress concentration factors in aluminum plates with circular holes subjected to uniaxial tension. An automated Python-based workflow was developed to systematically analyze 125 geometric configurations, validating FEA results against Peterson's theoretical predictions with excellent accuracy (average error < 5%).

Key Features

  • Automated parametric FEA pipeline using FreeCAD and Python
  • Mesh convergence study demonstrating solution stability (<2% variation)
  • Theoretical validation against Peterson's stress concentration factor approximation
  • Comprehensive visualization suite including heatmaps, Pareto plots
  • Design optimization insights for weight-stress trade-offs

Objectives

  1. Validate FEA methodology against established theoretical predictions
  2. Quantify the effects of geometric parameters (hole diameter, plate width, thickness) on stress concentration
  3. Develop a reusable computational workflow for parametric mechanical analysis
  4. Provide engineering design guidelines for perforated plate applications

Sample Visualizations

FEA vs Theory Stress Heatmap

Pareto Plot Stress vs Diameter

Methodology

Problem Setup

Geometry:

  • Rectangular aluminum plate (L × W × t)
  • Center circular hole (diameter d)
  • Fixed constraint on one end
  • Tensile load P = 50 kN on opposite end

Material: Aluminum 6061-T6

  • Young's Modulus: 69,000 MPa
  • Poisson's Ratio: 0.33
  • Yield Strength: 276 MPa

Parameter Ranges:

  • Hole diameter (d): 10 - 50 mm (5 levels)
  • Plate width (W): 60 - 200 mm (5 levels)
  • Thickness (t): 5 - 15 mm (5 levels)

Theoretical Background

Nominal stress in net section:

σ_nom = P / ((W - d) × t)

Peterson's approximation for Kt:

K_t = 3 - 3.13(d/W) + 3.66(d/W)² - 1.53(d/W)³

Maximum stress:

σ_max = K_t × σ_nom

Mesh Convergence Study

Four mesh refinement cases analyzed, demonstrating convergence:

Case Element Size Max σvM (MPa) Variation
1 5.00 mm (Moderate) 213 -0.9%
2 2.00 mm (Fine) 217 +0.9%
3 5.00 mm (Fine on hole) 213 -0.9%
4 3.00 mm (Fine) 216 +0.5%

Average FEA result: 214.75 MPa
Theoretical prediction: 215 MPa
Selected mesh: 3.00 mm for optimal balance of accuracy and computational cost

Repository Structure

parametric-fea/
├── README.md                            
├── requirements.txt                    
├── src/
│   ├── generate_results.py             
│   └── analyze_params.py               
│
├── models/
│   ├── plate_n.FCStd                   
│  
├── data/
│   └── results_plate_hole_c.csv        
│
└── plots/
    ├── kt_fea_vs_theory.png
    ├── stress_vs_holediameter.png
    ├── stress_vs_thickness.png
    ├── heatmap_stress.png
    ├── pareto_stress_vs_weight.png

Requirements

Installation

  1. Clone the repository:
git clone https://github.com/DennisxB/parametric-fea.git
cd parametric-fea-study
  1. Install Python dependencies:
pip install -r requirements.txt
  1. Configure FreeCAD path:

Edit src/generate_results.py and update:

FREECAD_PATH = "C:/FreeCAD-0.20/bin"  # Adjust to your installation

Usage

1. Run Parametric FEA Analysis

python src/generate_results.py

2. Analyze Results and Generate Plots

python src/analyze_params.py

Model Validation

  • FEA vs Theory correlation: R² > 0.95
  • Average Kt error: 3.94%

Parametric Sensitivity

Stress increases sharply with hole diameter — doubling d can raise σmax by 3–5 times, with a critical point near d/W ≈ 0.5. Increasing plate width W reduces stress, and it’s more effective than increasing thickness, though gains taper off beyond W > 150 mm. Thickness t shows a simple, linear effect and doubling t roughly halves the peak stress, making it the most predictable parameter.

Validation Against Theory from Sample Results

d/W Ratio Kt (Theory) Kt (FEA) Error (%)
0.10 2.60 2.63 1.2
0.25 2.44 2.47 1.2
0.50 2.15 2.13 -0.9
0.75 2.03 2.05 1.0

Contributions

Contributions are welcome! Areas for improvement:

  • Add support for non-circular holes (elliptical, rectangular)
  • Implement multi-hole configurations
  • Add fatigue life prediction
  • Develop optimization algorithms (genetic algorithm, gradient-based)
  • Create interactive Plotly dashboards
  • Add experimental validation data
  • Extend to composite materials

References

  1. R. E. Peterson, Stress Concentration Factors. New York: Wiley, 1974.

  2. W. D. Pilkey and D. F. Pilkey, Peterson's Stress Concentration Factors, 3rd ed. Hoboken, NJ: Wiley, 2008.

  3. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 6th ed. Oxford: Butterworth-Heinemann, 2005.

  4. W. C. Young and R. G. Budynas, Roark's Formulas for Stress and Strain, 7th ed. New York: McGraw-Hill, 2002.

  5. R. G. Budynas and J. K. Nisbett, Shigley's Mechanical Engineering Design, 9th ed. New York: McGraw-Hill, 2011.

  6. FreeCAD Community, "FreeCAD: Your own 3D parametric modeler," 2021. [Online]. Available: https://www.freecadweb.org/

About

Parametric Finite Element Analysis

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages