Skip to content

Deverydoo/MonitoringPrediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

156 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Tachyon Argus

Predictive Infrastructure Monitoring

Predictive System Monitoring

Predict server incidents 8 hours in advance with 88% accuracy Production-ready AI for infrastructure monitoring and proactive incident prevention

Version Python 3.10+ PyTorch License: BSL 1.1 Buy Me A Coffee

Version 2.1.0 - Cascade detection, drift monitoring, streaming training | Changelog

Dashboard Preview


๐ŸŽฏ What This Does

This system uses Temporal Fusion Transformers (TFT) to predict server incidents before they happen. It monitors your infrastructure in real-time and alerts you to problems hours before they become critical.

Key Features:

  • ๐Ÿ”ฎ 8-hour advance warning of critical incidents
  • ๐Ÿ“Š 88% prediction accuracy on server failures
  • ๐Ÿš€ Real-time monitoring via REST API + WebSocket
  • ๐ŸŽจ Interactive web dashboard built with Plotly Dash
  • ๐Ÿง  Transfer learning - new servers get accurate predictions immediately
  • โšก GPU-accelerated inference with RTX optimization
  • ๐Ÿ”„ Automatic retraining pipeline for fleet changes

๐Ÿš€ Quick Start

One-Command Startup

Navigate to the NordIQ/ application directory and run:

# Windows
cd NordIQ
start_all.bat

# Linux/Mac
cd NordIQ
./start_all.sh

That's it! The system will automatically:

  • โœ… Generate/verify API keys
  • โœ… Start inference daemon (port 8000)
  • โœ… Start metrics generator (demo data)
  • โœ… Launch web dashboard (port 8501)

Dashboard URL: http://localhost:8501 API URL: http://localhost:8000

Note: All application files are now in the NordIQ/ directory for clean deployment. See NordIQ/README.md for detailed deployment guide.


๐Ÿ’ก Why This Exists

The Problem:

  • Server outages cost $50K-$100K+ per incident
  • Most monitoring is reactive - alerts fire when it's already too late
  • Emergency fixes happen at 3 AM with customer impact

The Solution:

  • Predict incidents 8 hours ahead with TFT deep learning
  • Fix problems during business hours with planned maintenance
  • Avoid SLA penalties, lost revenue, and emergency overtime

One avoided outage pays for this entire system.


๐Ÿ“Š The Numbers

Metric Value
Prediction Horizon 8 hours (96 timesteps)
Accuracy 88% on critical incidents
Context Window 24 hours (288 timesteps)
Fleet Size 20-90 servers (scalable)
Inference Speed <100ms per server (GPU)
Model Size 88K parameters
Training Time ~30 min on RTX 4090
Development Time 67.5 hours total

๐Ÿ—๏ธ Architecture

Development/Training Pipeline

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ NordIQ/src/generators/metrics_generator.py โ”‚
โ”‚ Generates realistic server metrics โ”‚
โ”‚ โ†’ NordIQ/data/training/*.parquet โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
 โ”‚
 โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ NordIQ/src/training/tft_trainer.py โ”‚
โ”‚ Trains Temporal Fusion Transformer โ”‚
โ”‚ โ†’ NordIQ/models/tft_model_*/ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Production Runtime Architecture (Microservices)

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ MongoDB / Elasticsearch โ”‚
โ”‚ Production metrics from Linborg monitoring โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
 โ”‚
 โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ NordIQ/src/core/adapters/*_adapter.py โ”‚
โ”‚ Fetches metrics every 5s, forwards to daemon โ”‚
โ”‚ โ†“ HTTP POST /feed โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
 โ”‚
 โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ NordIQ/src/daemons/tft_inference_daemon.py โ”‚
โ”‚ Production inference server โ”‚
โ”‚ Port 8000 - REST API + WebSocket โ”‚
โ”‚ โ†“ HTTP GET /predict โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
 โ”‚
 โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ NordIQ/src/dashboard/tft_dashboard_web.py โ”‚
โ”‚ Interactive Dash dashboard โ”‚
โ”‚ โ†’ http://localhost:8501 โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

โš ๏ธ CRITICAL: Adapters run as independent daemons that actively PUSH data to the inference daemon. See Docs/ADAPTER_ARCHITECTURE.md for complete details on the microservices architecture.


๐ŸŽจ Dashboard Features

1. Fleet Overview

  • Real-time fleet health status (20/20 servers monitored)
  • Environment incident probability
  • Active alerts and risk distribution

2. Server Heatmap

  • Visual grid of all servers
  • Color-coded by risk level (green/yellow/red)
  • Grouped by server profile

3. Top Problem Servers

  • Ranked by incident risk score
  • TFT predictions for next 8 hours
  • Specific failure modes (CPU, memory, disk)

4. Historical Trends

  • Prediction confidence over time
  • Metric evolution charts
  • Pattern recognition insights

5. Interactive Demo Mode

  • Healthy โ†’ Degrading โ†’ Critical scenarios
  • Watch the model detect patterns in real-time
  • Perfect for presentations and testing

๐Ÿง  The Secret Sauce: Profile-Based Transfer Learning

Most AI treats every server as unique. This system is smarter.

7 Server Profiles:

ml_compute # ML training nodes (high CPU/memory)
database # Databases (disk I/O intensive)
web_api # Web servers (network heavy)
conductor_mgmt # Orchestration systems
data_ingest # ETL pipelines
risk_analytics # Risk calculation nodes
generic # Catch-all for other workloads

Why This Matters:

  • New server ppml0099 comes online โ†’ Model sees ppml prefix
  • Instantly applies all ML server patterns learned during training
  • Strong predictions from day 1 with zero retraining
  • Reduces retraining frequency by 80% (every 2 months vs every 2 weeks)

๐Ÿ“ฆ Installation

Prerequisites

# Python 3.10+
# CUDA 11.8+ (for GPU acceleration)
# 16GB+ RAM recommended

Setup

# 1. Clone repository
git clone https://github.com/yourusername/MonitoringPrediction.git
cd MonitoringPrediction

# 2. Create conda environment
conda create -n py310 python=3.10
conda activate py310

# 3. Install dependencies
pip install -r requirements.txt

# 4. Verify GPU (optional but recommended)
python -c "import torch; print(f'CUDA: {torch.cuda.is_available()}')"

# 5. Navigate to application directory
cd NordIQ

๐Ÿ“ Project Structure

MonitoringPrediction/
โ”œโ”€โ”€ NordIQ/ # ๐ŸŽฏ Main Application (Deploy This!)
โ”‚ โ”œโ”€โ”€ start_all.bat/sh # One-command startup
โ”‚ โ”œโ”€โ”€ stop_all.bat/sh # Stop all services
โ”‚ โ”œโ”€โ”€ README.md # Deployment guide
โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€ bin/ # Utility scripts
โ”‚ โ”‚ โ”œโ”€โ”€ generate_api_key.py # API key management
โ”‚ โ”‚ โ””โ”€โ”€ setup_api_key.* # Setup helpers
โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€ src/ # Application source code
โ”‚ โ”‚ โ”œโ”€โ”€ daemons/ # Background services
โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ tft_inference_daemon.py
โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ metrics_generator_daemon.py
โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ adaptive_retraining_daemon.py
โ”‚ โ”‚ โ”œโ”€โ”€ dashboard/ # Web interface
โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ tft_dashboard_web.py
โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ Dashboard/ # Modular components
โ”‚ โ”‚ โ”œโ”€โ”€ training/ # Model training
โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ main.py # CLI interface
โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ tft_trainer.py # Training engine
โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ precompile.py # Optimization
โ”‚ โ”‚ โ”œโ”€โ”€ core/ # Shared libraries
โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ config/ # Configuration
โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ utils/ # Utilities
โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ adapters/ # Production adapters
โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ explainers/ # XAI components
โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ *.py # Core modules
โ”‚ โ”‚ โ””โ”€โ”€ generators/ # Data generation
โ”‚ โ”‚ โ””โ”€โ”€ metrics_generator.py
โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€ models/ # Trained models
โ”‚ โ”œโ”€โ”€ data/ # Runtime data
โ”‚ โ”œโ”€โ”€ logs/ # Application logs
โ”‚ โ””โ”€โ”€ dash_config.py # Dashboard config
โ”‚
โ”œโ”€โ”€ Docs/ # Documentation
โ”‚ โ”œโ”€โ”€ RAG/ # For AI assistants
โ”‚ โ””โ”€โ”€ *.md # User guides
โ”œโ”€โ”€ BusinessPlanning/ # Confidential (gitignored)
โ”œโ”€โ”€ tools/ # Development tools
โ”œโ”€โ”€ README.md # This file
โ”œโ”€โ”€ CHANGELOG.md # Version history
โ”œโ”€โ”€ VERSION # Current version (1.1.0)
โ””โ”€โ”€ LICENSE # BSL 1.1

Key Points:

  • ๐ŸŽฏ Deploy: Copy the entire NordIQ/ folder
  • ๐Ÿ“š Learn: Read Docs/ for guides and architecture
  • ๐Ÿ” Business: BusinessPlanning/ is gitignored (confidential)
  • ๐Ÿ› ๏ธ Dev: Root contains development/documentation files

๐ŸŽ“ Training & Configuration

Option 1: Using CLI (Recommended)

Navigate to NordIQ directory first:

cd NordIQ

Then use the training CLI:

# Generate 30 days of realistic metrics (20 servers)
python src/training/main.py generate --servers 20 --hours 720

# Train model (20 epochs)
python src/training/main.py train --epochs 20

# Check status
python src/training/main.py status

Option 2: Direct Commands

cd NordIQ

# Generate training data
python src/generators/metrics_generator.py --servers 20 --hours 720

# Train model
python src/training/tft_trainer.py --epochs 20

# Data saved to: NordIQ/data/training/*.parquet
# Model saved to: NordIQ/models/tft_model_*/

Time: ~30-60 seconds for data generation, ~30-40 minutes for training on RTX 4090

Configuration

All configuration is in NordIQ/src/core/config/:

  • model_config.py - Model hyperparameters
  • metrics_config.py - Server profiles and baselines
  • api_config.py - API and authentication settings

To customize, edit these files before training.


๐Ÿ”Œ API Usage

REST API

# Health check
curl http://localhost:8000/health

# Current predictions
curl http://localhost:8000/predictions/current

# Specific server prediction
curl http://localhost:8000/predict/ppml0001

# Active alerts
curl http://localhost:8000/alerts/active

# Fleet status
curl http://localhost:8000/status

WebSocket (Real-time)

const ws = new WebSocket('ws://localhost:8000/ws');

ws.onmessage = (event) => {
 const prediction = JSON.parse(event.data);
 console.log(`Server ${prediction.server_id}: ${prediction.risk_score}`);
};

๐Ÿ› ๏ธ Project Structure

MonitoringPrediction/
โ”œโ”€โ”€ ๐Ÿ“„ _StartHere.ipynb # Interactive notebook walkthrough
โ”œโ”€โ”€ ๐Ÿ”ง config.py # System configuration
โ”œโ”€โ”€ ๐Ÿ“Š metrics_generator.py # Training data generator
โ”œโ”€โ”€ ๐Ÿง  tft_trainer.py # Model training
โ”œโ”€โ”€ โšก tft_inference.py # Production inference daemon
โ”œโ”€โ”€ ๐ŸŽจ tft_dashboard_web.py # Dash web dashboard
โ”œโ”€โ”€ ๐Ÿ” data_validator.py # Contract validation
โ”œโ”€โ”€ ๐Ÿ”‘ server_encoder.py # Hash-based server encoding
โ”œโ”€โ”€ ๐ŸŽฎ gpu_profiles.py # GPU optimization profiles
โ”œโ”€โ”€ ๐Ÿ“ training/ # Training data directory
โ”‚ โ”œโ”€โ”€ server_metrics.parquet # Generated metrics
โ”‚ โ””โ”€โ”€ server_mapping.json # Server encoder mapping
โ”œโ”€โ”€ ๐Ÿ“ models/ # Trained models
โ”‚ โ””โ”€โ”€ tft_model_YYYYMMDD_HHMMSS/
โ”‚ โ”œโ”€โ”€ model.safetensors # Model weights
โ”‚ โ”œโ”€โ”€ dataset_parameters.pkl # Trained encoders (CRITICAL!)
โ”‚ โ”œโ”€โ”€ server_mapping.json # Server encoder
โ”‚ โ”œโ”€โ”€ training_info.json # Contract metadata
โ”‚ โ””โ”€โ”€ config.json # Model architecture
โ””โ”€โ”€ ๐Ÿ“ Docs/ # complete documentation
 โ”œโ”€โ”€ ESSENTIAL_RAG.md # Complete system reference (1200 lines)
 โ”œโ”€โ”€ DATA_CONTRACT.md # Schema specification
 โ”œโ”€โ”€ QUICK_START.md # Fast onboarding
 โ”œโ”€โ”€ DASHBOARD_GUIDE.md # Dashboard features
 โ”œโ”€โ”€ SERVER_PROFILES.md # Transfer learning design
 โ””โ”€โ”€ PROJECT_CODEX.md # Architecture deep dive

๐Ÿ”ฌ Technical Innovations

1. Hash-Based Server Encoding

Problem: Sequential IDs break when fleet changes Solution: Deterministic SHA256-based encoding

# Before (breaks easily)
ppml0001 โ†’ 0
ppml0002 โ†’ 1
# Add ppml0003? All IDs shift!

# After (stable)
ppml0001 โ†’ hash('ppml0001') โ†’ '285039' # Always the same
ppml0002 โ†’ hash('ppml0002') โ†’ '215733' # Deterministic
ppml0003 โ†’ hash('ppml0003') โ†’ '921211' # No conflicts

2. Data Contract System

Problem: Schema mismatches break models Solution: Single source of truth for all components

# DATA_CONTRACT.md defines:
โœ… Valid states: ['healthy', 'heavy_load', 'critical_issue', ...]
โœ… Required features: cpu_percent, memory_percent, disk_percent, ...
โœ… Encoding methods: hash-based server IDs, NaN handling
โœ… Version tracking: v1.0.0 compatibility checks

3. Encoder Persistence

Problem: TFT encoders lost between training/inference Solution: Save dataset_parameters.pkl with trained vocabularies

# Training saves:
dataset_parameters.pkl โ†’ {
 'server_id': NaNLabelEncoder(vocabulary=['285039', '215733', ...]),
 'status': NaNLabelEncoder(vocabulary=['healthy', 'critical_issue', ...]),
 'profile': NaNLabelEncoder(vocabulary=['ml_compute', 'database', ...])
}

# Inference loads โ†’ All servers recognized!

๐Ÿ“ˆ Performance

Training Performance

Dataset Size Epochs GPU Time
24 hours 20 RTX 4090 ~8 min
168 hours (1 week) 20 RTX 4090 ~15 min
720 hours (30 days) 20 RTX 4090 ~30 min

Inference Performance

Fleet Size Batch GPU Latency
20 servers 1 RTX 4090 ~50ms
90 servers 1 RTX 4090 ~85ms
20 servers 20 RTX 4090 ~120ms

Data Loading (Parquet vs JSON)

Format 24h 168h 720h
JSON 2.1s 15.3s 68.7s
Parquet 0.12s 0.45s 1.8s
Speedup 17.5x 34x 38x

๐ŸŽฏ Use Cases

1. Proactive Incident Prevention

  • Predict memory exhaustion 8 hours ahead
  • Schedule maintenance during business hours
  • Avoid 3 AM emergency wake-up calls

2. Capacity Planning

  • Identify servers approaching resource limits
  • Forecast infrastructure needs
  • Optimize server allocation

3. SLA Protection

  • Get early warning before SLA violations
  • Prevent customer-impacting outages
  • Reduce penalty costs

4. Cost Optimization

  • Rightsize over-provisioned servers
  • Identify idle resources
  • Reduce cloud spend

๐Ÿ“š Documentation

complete docs in /Docs/:

Core Documentation

Production Integration

Architecture


๐Ÿค Contributing

Contributions welcome! Areas for improvement:

  • Additional server profiles (Kubernetes, message queues, caches)
  • Multi-datacenter support
  • Automated retraining pipeline
  • Action recommendation system
  • Integration with alerting platforms (PagerDuty, Slack, Teams)
  • Explainable AI features (SHAP values, attention visualization)

See FUTURE_ROADMAP.md for planned features.


๐Ÿ“ License

MIT License - See LICENSE file for details


๐Ÿ™ Acknowledgments

Built with:

Special Thanks:

  • Claude Code - AI-assisted development that made this possible in 67.5 hours
  • Temporal Fusion Transformer paper: arxiv.org/abs/1912.09363

๐Ÿ“ž Contact

Questions? Issues? Feedback?

  • Open an issue on GitHub
  • Check the Docs/ directory for detailed guides
  • Review ESSENTIAL_RAG.md for troubleshooting

๐ŸŽค The Story

This system was built in 67.5 hours using AI-assisted development with Claude Code. What would have taken months of traditional development was accomplished in days through intelligent collaboration between human domain expertise and AI coding capabilities.

Key Stats:

  • โฑ๏ธ 67.5 hours total development time
  • ๐Ÿ“Š 88% accuracy on critical incident prediction
  • ๐Ÿš€ 8-hour advance warning before failures
  • ๐Ÿ’ฐ One prevented outage pays for the entire system
  • ๐ŸŽฏ Production-ready from day 1

Read the full story:


Built with ๐Ÿง  AI + โ˜• Coffee + โšก Vibe Coding

"Use AI or get replaced by someone who will." ๐ŸŽฏ


Ready to predict the future? Start with the Quick Start above! ๐Ÿš€

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •