Skip to content

Digital-Defiance/GeoRoadExtract

Repository files navigation

Road Extraction from Satellite Images

Useful for urban planning, map updating, and infrastructure analysis. Employs image processing and machine learning to detect and map roads from high-resolution satellite data.

📋 Results

image

image

image

image

image

🧠 About Model

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 16, 256, 256]             448
       BatchNorm2d-2         [-1, 16, 256, 256]              32
            Conv2d-3         [-1, 16, 256, 256]           2,320
       BatchNorm2d-4         [-1, 16, 256, 256]              32
           Dropout-5         [-1, 16, 256, 256]               0
         MaxPool2d-6         [-1, 16, 128, 128]               0
            Conv2d-7         [-1, 32, 128, 128]           4,640
       BatchNorm2d-8         [-1, 32, 128, 128]              64
            Conv2d-9         [-1, 32, 128, 128]           9,248
      BatchNorm2d-10         [-1, 32, 128, 128]              64
          Dropout-11         [-1, 32, 128, 128]               0
        MaxPool2d-12           [-1, 32, 64, 64]               0
           Conv2d-13           [-1, 48, 64, 64]          13,872
      BatchNorm2d-14           [-1, 48, 64, 64]              96
           Conv2d-15           [-1, 48, 64, 64]          20,784
      BatchNorm2d-16           [-1, 48, 64, 64]              96
          Dropout-17           [-1, 48, 64, 64]               0
        MaxPool2d-18           [-1, 48, 32, 32]               0
           Conv2d-19           [-1, 64, 32, 32]          27,712
      BatchNorm2d-20           [-1, 64, 32, 32]             128
           Conv2d-21           [-1, 64, 32, 32]          36,928
      BatchNorm2d-22           [-1, 64, 32, 32]             128
          Dropout-23           [-1, 64, 32, 32]               0
        MaxPool2d-24           [-1, 64, 16, 16]               0
           Conv2d-25          [-1, 128, 16, 16]          73,856
      BatchNorm2d-26          [-1, 128, 16, 16]             256
           Conv2d-27          [-1, 128, 16, 16]         147,584
      BatchNorm2d-28          [-1, 128, 16, 16]             256
          Dropout-29          [-1, 128, 16, 16]               0
  ConvTranspose2d-30           [-1, 64, 32, 32]          32,832
           Conv2d-31           [-1, 64, 32, 32]          73,792
      BatchNorm2d-32           [-1, 64, 32, 32]             128
          Dropout-33           [-1, 64, 32, 32]               0
           Conv2d-34           [-1, 64, 32, 32]          36,928
      BatchNorm2d-35           [-1, 64, 32, 32]             128
          Dropout-36           [-1, 64, 32, 32]               0
  ConvTranspose2d-37           [-1, 48, 64, 64]          12,336
           Conv2d-38           [-1, 48, 64, 64]          41,520
      BatchNorm2d-39           [-1, 48, 64, 64]              96
          Dropout-40           [-1, 48, 64, 64]               0
           Conv2d-41           [-1, 48, 64, 64]          20,784
      BatchNorm2d-42           [-1, 48, 64, 64]              96
          Dropout-43           [-1, 48, 64, 64]               0
  ConvTranspose2d-44         [-1, 32, 128, 128]           6,176
           Conv2d-45         [-1, 32, 128, 128]          18,464
      BatchNorm2d-46         [-1, 32, 128, 128]              64
          Dropout-47         [-1, 32, 128, 128]               0
           Conv2d-48         [-1, 32, 128, 128]           9,248
      BatchNorm2d-49         [-1, 32, 128, 128]              64
          Dropout-50         [-1, 32, 128, 128]               0
  ConvTranspose2d-51         [-1, 16, 256, 256]           2,064
           Conv2d-52         [-1, 16, 256, 256]           4,624
      BatchNorm2d-53         [-1, 16, 256, 256]              32
          Dropout-54         [-1, 16, 256, 256]               0
           Conv2d-55         [-1, 16, 256, 256]           2,320
      BatchNorm2d-56         [-1, 16, 256, 256]              32
          Dropout-57         [-1, 16, 256, 256]               0
           Conv2d-58          [-1, 1, 256, 256]              17
================================================================
Total params: 600,289
Trainable params: 600,289
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.75
Forward/backward pass size (MB): 173.25
Params size (MB): 2.29
Estimated Total Size (MB): 176.29
----------------------------------------------------------------

image

🔗 Links

-> Dataset
-> Research Paper
-> U-Net Intro

About

Road extraction from satellite images

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published