TensorFlow implementation of A simple neural network module for relational reasoning for bAbi task.
- image: A Simple Neural Network Module for Relational Reasoning Slides by Xiadong Gu
- Python 3.6
- TensorFlow >= 1.4
- hb-config (Singleton Config)
- requests
- tqdm (progress bar)
- Slack Incoming Webhook URL
init Project by hb-base
.
├── config # Config files (.yml, .json) using with hb-config
├── data # dataset path
├── notebooks # Prototyping with numpy or tf.interactivesession
├── relation_network # relation network architecture graphs (from input to logits)
├── __init__.py # Graph logic
├── encoder.py # Encoder
└── relation.py # RN Module
├── data_loader.py # raw_date -> precossed_data -> generate_batch (using Dataset)
├── hook.py # training or test hook feature (eg. print_variables)
├── main.py # define experiment_fn
└── model.py # define EstimatorSpec
Reference : hb-config, Dataset, experiments_fn, EstimatorSpec
- model was trained on the joint version of bAbI (all 20 tasks simultaneously), using the full dataset of 10K examples per task. (paper experiments)
Can control all Experimental environment.
example: bAbi_task1.yml
data:
base_path: 'data/'
task_path: 'en-10k/'
task_id: 1
PAD_ID: 0
model:
batch_size: 64
use_pretrained: false # (true or false)
embed_dim: 32 # if use_pretrained: only available 50, 100, 200, 300
encoder_type: uni # uni, bi
cell_type: lstm # lstm, gru, layer_norm_lstm, nas
num_layers: 1
num_units: 32
dropout: 0.5
g_units:
- 64
- 64
- 64
- 64
f_units:
- 64
- 128
train:
learning_rate: 0.00003
optimizer: 'Adam' # Adagrad, Adam, Ftrl, Momentum, RMSProp, SGD
train_steps: 200000
model_dir: 'logs/bAbi_task1'
save_checkpoints_steps: 1000
check_hook_n_iter: 1000
min_eval_frequency: 1
print_verbose: False
debug: False
slack:
webhook_url: "" # after training notify you using slack-webhook
- debug mode : using tfdbg
Install requirements.
pip install -r requirements.txt
Then, prepare dataset.
sh scripts/fetch_babi_data.sh
Finally, start train and evaluate model
python main.py --config bAbi_task1 --mode train_and_evaluate
✅ : Working
◽ : Not tested yet.
- ✅
evaluate
: Evaluate on the evaluation data. - ◽
extend_train_hooks
: Extends the hooks for training. - ◽
reset_export_strategies
: Resets the export strategies with the new_export_strategies. - ◽
run_std_server
: Starts a TensorFlow server and joins the serving thread. - ◽
test
: Tests training, evaluating and exporting the estimator for a single step. - ✅
train
: Fit the estimator using the training data. - ✅
train_and_evaluate
: Interleaves training and evaluation.
tensorboard --logdir logs
- bAbi_task1