Skip to content

External reasoning orchestration system for fast language models.

License

Notifications You must be signed in to change notification settings

DrMorev/Modular-Reasoning-Framework-MRF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Modular Reasoning Framework (MRF)

External reasoning orchestration system for fast language models.

Problem

Fast LLMs (Gemini Flash, GPT-4o-mini, Claude Haiku) are cost-effective but lack structured reasoning capabilities. Native chain-of-thought is either unavailable or expensive.

Solution

MRF provides an external reasoning scaffold that forces structured problem-solving:

SPECIFICATION → PLANNING → EXECUTION → VERIFICATION → REFLECTION → SYNTHESIS

The model never "thinks out loud" — all reasoning happens through controlled JSON stages with external verification.

Key Features

  • Safe math evaluation — AST-based, no eval(), Decimal precision
  • Self-consistency — Multiple candidates with voting
  • DAG validation — Dependency checking, cycle detection
  • Tool registry — Pluggable external functions
  • Quality gates — Definition of Done (DoD) checks before output
  • Experiment tracking — Lightweight JSONL logger, no external dependencies

Architecture

┌─────────────────────────────────────────────────────────────┐
│                     User Query                               │
└─────────────────────┬───────────────────────────────────────┘
                      │
                      ▼
┌─────────────────────────────────────────────────────────────┐
│  SPEC: Define problem structure, constraints, outputs        │
└─────────────────────┬───────────────────────────────────────┘
                      │
                      ▼
┌─────────────────────────────────────────────────────────────┐
│  PLAN: Break into steps, identify dependencies (DAG)         │
└─────────────────────┬───────────────────────────────────────┘
                      │
                      ▼
┌─────────────────────────────────────────────────────────────┐
│  SOLVE: Execute steps (math via SafeEvaluator, tools)        │
└─────────────────────┬───────────────────────────────────────┘
                      │
                      ▼
┌─────────────────────────────────────────────────────────────┐
│  VERIFY: Check results against constraints                   │
└─────────────────────┬───────────────────────────────────────┘
                      │
                      ▼
┌─────────────────────────────────────────────────────────────┐
│  REFLECT: Model critiques own plan, patches if needed        │
└─────────────────────┬───────────────────────────────────────┘
                      │
                      ▼
┌─────────────────────────────────────────────────────────────┐
│  EMIT: Synthesize verified results into final answer         │
└─────────────────────────────────────────────────────────────┘

Installation

pip install -r requirements.txt

Quick Start

from mrf import ReasoningOrchestrator, Config

config = Config(
    candidates=3,           # Self-consistency voting
    max_reflect_loops=2,    # Reflection iterations
    timeout_seconds=30
)

orchestrator = ReasoningOrchestrator(llm_provider, config)
result = await orchestrator.solve("What is 15% of 847?")

Use Cases

  • Math problems — With external verification, not model arithmetic
  • Multi-step reasoning — Complex queries broken into dependency graph
  • Batch processing — Cost-effective reasoning at scale
  • Education — Explainable reasoning traces

Limitations

  • Adds latency (multiple LLM calls per query)
  • JSON parsing can fail on malformed model output
  • Not suitable for creative/open-ended tasks

Prior Art & Novelty

A systematic search was conducted across arXiv, GitHub, and patent databases (November 2024).

Related work:

Project Similarity Difference
ReWOO (LangGraph) Plan-Worker-Solver pattern Not optimized for fast/cheap models
OpenR Test-time compute Focused on RL training, not scaffolding
Self-Consistency Voting mechanism No structured spec→plan→execute pipeline
ART Automatic reasoning steps General purpose, not cost-optimized

What MRF adds:

  • Cost-first design — Explicitly targets Gemini Flash / GPT-4o-mini tier
  • External safe evaluation — Math computed via Python AST, not in model's "head"
  • DoD quality gates — Definition of Done checks before output
  • Production focus — Built for batch processing, not research demos

Novelty assessment: 6.5-7.5/10 — Novel combination of established techniques for a specific underserved problem (cost-quality tradeoff in reasoning).

Patents: No direct patents found on this approach.

References

  • Wei et al. (2022): Chain-of-Thought Prompting
  • Wang et al. (2023): Self-Consistency Improves Chain of Thought
  • Yao et al. (2023): Tree of Thoughts
  • Xu et al. (2023): ReWOO — Reasoning WithOut Observation

License

MIT

Author

Sergey Morev — Architecture, Implementation

With contributions from collaborative AI development process.

About

External reasoning orchestration system for fast language models.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages