Skip to content

Weather prediction model serving with rayserve and fastapi (for a cloud computing uni course - RSO).

Notifications You must be signed in to change notification settings

DrejcPesjak/weather-prediction-rayserve-fastapi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Weather Prediction with Ray Serve and FastAPI

This project serves a weather prediction model using Ray Serve and FastAPI, developed as part of a cloud computing university course (RSO).

Running Locally

To run the application locally, follow these steps:

  1. Install Dependencies:

    pip install -r requirements.txt
  2. Set Google Application Credentials:

    export GOOGLE_APPLICATION_CREDENTIALS=/path/to/your/credentials.json
  3. Start Ray Serve Application:

    serve run rayserve_model:model_predictor

Docker Deployment (Currently not working)

To build and run a Docker image (note: this functionality is currently not operational):

# Build the Docker image
# docker build -t weather-pred-ray .

# Run the Docker container on port 8000
# docker run -p 8000:8000 weather-pred-ray

Deploying to Google Kubernetes Engine (GKE)

For detailed setup commands, see GKE Commands.

Also refer to Ray.Io docs for more info:

Initial Setup

  1. List Google Cloud Projects:

    gcloud projects list --sort-by=projectId --limit=5
  2. Set Desired Project:

    gcloud config set project balmy-apogee-404909
  3. Check Existing Kubernetes Clusters or Create a New One:

    gcloud container clusters list
    # Create a new cluster if necessary
  4. Get Credentials for Kubernetes Cluster:

    gcloud container clusters get-credentials rayserve-cluster --zone europe-central2
  5. Install Helm and Configure Ray Helm Chart Repository:

    helm repo add kuberay https://ray-project.github.io/kuberay-helm/
    helm repo update

Deploying the Application

  1. Install KubeRay Operator:

    helm install kuberay-operator kuberay/kuberay-operator --version 1.0.0
  2. Verify Operator is Running:

    kubectl get pods
  3. Install RayCluster:

    helm install raycluster kuberay/ray-cluster --version 1.0.0
  4. Verify RayCluster Status:

    kubectl get rayclusters
  5. Apply RayService Configuration:

    kubectl apply -f gke-deploy/ray-service.weather-prediction.yaml

Additional Configuration

  1. Create and Annotate a Service Account for Workload Identity:

    kubectl create serviceaccount k8s-drejc
    kubectl annotate serviceaccount k8s-drejc "iam.gke.io/gcp-service-account=drejc-rso-new@balmy-apogee-404909.iam.gserviceaccount.com"
  2. Add IAM Policy Binding for Service Account:

    gcloud iam service-accounts add-iam-policy-binding \
       drejc-rso-new@balmy-apogee-404909.iam.gserviceaccount.com \
       --role roles/iam.workloadIdentityUser \
       --member "serviceAccount:balmy-apogee-404909.svc.id.goog[default/k8s-drejc]"
  3. Create a Proxy-Only Subnet if Required:

    gcloud compute networks subnets create proxy-only-subnet-01 \
       --purpose=REGIONAL_MANAGED_PROXY \
       --role=ACTIVE \
       --region=europe-central2 \
       --network=default \
       --range=10.10.0.0/23
  4. Apply BackendConfig for Health Checks:

    kubectl apply -f gke-deploy/ray-hc-backendconfig.yaml
  5. Annotate the Service for BackendConfig:

    kubectl annotate service rvice-weather-prediction-raycluster-5phmv-head-svc beta.cloud.google.com/backend-config='{"default": "ray-serve-backend-config"}'
  6. Apply Ingress Configuration:

    kubectl apply -f gke-deploy/ray-cluster-gclb-ingress.yaml

Verification and Troubleshooting

  • Check All Pods are Running:

    kubectl get pods
  • Verify Services and Their ClusterIP:

    kubectl get svc
  • Inspect Ingress and Ensure External IP if Public Access is Desired:

    kubectl get ingress ray-cluster-ingress
  • Troubleshooting: Use kubectl describe and GCP Console to check load balancers, firewall rules, quotas, etc.

Notes

  • Order of operations is crucial. Ensure BackendConfig is applied before annotating the service and then applying the Ingress configuration.
  • Make sure that pods have status "running" after executing kubectl commands it might take up to 15 minutes to spin up some of these pods.
  • For public access, use the gce ingress class in your Ingress configuration to create an external HTTP(S) load balancer.
  • Ensure your application is secured appropriately when exposed publicly.

About

Weather prediction model serving with rayserve and fastapi (for a cloud computing uni course - RSO).

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published