Skip to content

Unsupervised learning of Object Landmarks through Conditional Image Generation

License

Notifications You must be signed in to change notification settings

DuaneNielsen/keypoints

Repository files navigation

Replication of

Tomas Jakab*, Ankush Gupta*, Hakan Bilen, Andrea Vedaldi (* equal contribution). Advances in Neural Information Processing Systems (NeurIPS) 2018.

and a partial replication of

Tejas Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, Andrew Zisserman, Volodymyr Mnih. Unsupervised Learning of Object Keypoints for Perception and Control. NeurIPS 2019. [arXiv].

in Pytorch by Duane

result samples

conditional image generation (Tomas and Ankush et al)

alt text

transporter network (Ankush et al)

alt_text

installing

requires python 3.6 and NVIDIA apex

windows not supported

git clone https://github.com/duanenielsen/keypoints
python3 -m venv ~/.venv/keypoints
. ~/.venv/keypoints/activate
cd keypoints
pip3 install .

NVIDIA apex is required to run, open an issue if you would like me to make it optional

http://github.com/NVIDIA/apex

follow the apex readme to install

install celeba dataset

learning keypoints on faces requires celeba dataset, download https://drive.google.com/open?id=0B7EVK8r0v71pZjFTYXZWM3FlRnM

extract to directory as below...

keypoints/data
├── celeba-low
│   └── img_align_celeba
│       ├── 000001.jpg
│       ├── 000002.jpg
│       ├── 000003.jpg

running

pong example with 16 bit precision

python3 transporter.py --run_id 2 --config configs/transporter_pong_grey.yaml

if you dont have RTX card, or can't be bothered with mixed precision you can disable it, but you may need to adjust minibatch size, use the flags

--opt_level O0 --batch_size 16

if you get GPU memory errors, reduce batch size until it fits on your card

tensorboard files and checkpoints are saved to data/models

2 checkpoints are saved during runs

checkpoint - the latest version of the model during training best - the model that acheived the best test loss during training

reproduce Jakab and Ankush et al on celeba
python3 keypoints.py --run_id 3 --config configs/keypoints_celeba.yaml 
train Ankush et al Transporter network on celeba
python transporter.py --run_id 1 --config configs/transporter_celeba.yaml

basic command usage

python3 keypoints.py --run_id 1 --config configs/keypoints.yaml

useful command line switches

run on a specific cuda device

--device cuda:1

run in 32 bit precision

--opt_level O0

display the run live, update display every 100 minibatches

--display --display_freq 100

load from checkpoint files in directory

--load data/models/VGG_PONG_LAYERNECK/run_1/checkpoint

run a saved model in demo mode (don't train, and display live results)

--load data/models/VGG_PONG_LAYERNECK/run_1/best --demo --display --display_freq 5

About

Unsupervised learning of Object Landmarks through Conditional Image Generation

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages