Full-finetuning Question-Answering model using the COVID-QA dataset related to COVID-19.
The dataset used for this project is the COVID-QA Question Answering Dataset.
src/
├── config/
│ └── cfg.yaml
├── data/
│ └── dataset.py
├── models/
│ └── model.py
├── scripts/
│ ├── test.py
│ └── train.py
├── utils/
│ └── utils.py
└── app.py
requirements.txt
RoBERTa (Robustly optimized BERT approach) - roberta-base
To fine-tune the model, follow these steps:
-
Install Dependencies: Install the required dependencies using the following command:
pip install -r requirements.txt
-
Prepare the Dataset: The dataset is automatically loaded and preprocessed by the scripts.
-
Train the Model: Run the training script to fine-tune the model:
python src/scripts/train.py
-
Evaluate the Model: Run the testing script to evaluate the model:
python src/scripts/test.py
-
Run the App: Run the Streamlit app for real-time question-answering with the model:
streamlit run src/app.py
The configuration for the model, training, and evaluation is specified in the cfg.yaml file. Adjust the configuration as needed for your specific requirements.