-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
305 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c0744c9f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from dataloader import *\n", | ||
"from model import *\n", | ||
"from main import *\n", | ||
"from utils import *\n", | ||
"import matplotlib.pyplot as plt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "04766fc7", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"image_height=256\n", | ||
"image_width=256\n", | ||
"image_channel=3" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "dbd05bca", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"img_dir='E:/Data_test/images'\n", | ||
"mask_dir='E:/Data_test/mask'\n", | ||
"weight_dir='E:/Data_test/weights'\n", | ||
"\n", | ||
"main(img_dir,mask_dir,weight_dir)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f8393f0f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"\n", | ||
"path = r'E:\\Data_test\\images\\CHNCXR_0001_0.png'\n", | ||
"model=SE_UResNet((image_height,image_width,image_channel),num_classes, dropout_rate=0.0, batch_norm=True)\n", | ||
"model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])\n", | ||
"model.load_weights(str(weight_dir)+'/weights.h5')\n", | ||
"\n", | ||
"test_image = cv2.resize(cv2.imread(path),(image_height,image_width))\n", | ||
"predicted_image=model.predict(test_image.reshape(1,image_height,image_width,image_channel))\n", | ||
"plt.imshow(predicted_image[0]>0.5,cmap='gray')" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.17" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import keras | ||
import numpy as np | ||
import cv2 | ||
|
||
class Loader(keras.utils.Sequence): | ||
"""Helper to iterate over the data (as Numpy arrays).""" | ||
|
||
def __init__(self, batch_size, img_size, input_img_paths, mask_img_paths,image_channel,num_classes): | ||
self.batch_size = batch_size | ||
self.img_size = img_size | ||
self.input_img_paths = input_img_paths | ||
self.mask_img_paths = mask_img_paths | ||
self.num_classes = num_classes | ||
self.image_channel=image_channel | ||
|
||
|
||
def __len__(self): | ||
return len(self.mask_img_paths) // self.batch_size | ||
|
||
def __getitem__(self, idx): | ||
"""Returns tuple (input, target) correspond to batch #idx.""" | ||
i = idx * self.batch_size | ||
batch_input_img_paths = self.input_img_paths[i : i + self.batch_size] | ||
batch_mask_img_paths = self.mask_img_paths[i : i + self.batch_size] | ||
x = np.zeros((self.batch_size,) + self.img_size +(self.image_channel,) , dtype="uint8") | ||
for j, path in enumerate(batch_input_img_paths): | ||
img = cv2.resize(cv2.imread(path),self.img_size) | ||
x[j]=img | ||
y = np.zeros((self.batch_size,) + self.img_size + (self.num_classes,), dtype="uint8") | ||
for j, path in enumerate(batch_mask_img_paths): | ||
msk = cv2.resize(cv2.imread(path),self.img_size) | ||
y[j]=np.expand_dims((msk[:,:,0]/255).astype('uint8'),axis=-1) | ||
return x, y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
from dataloader import* | ||
from model import* | ||
import random | ||
import os | ||
def main(input_dir, mask_dir,weight_dir, | ||
image_height=256, | ||
image_width=256, | ||
image_channel=3, | ||
img_size = (256,256), | ||
num_classes = 1, | ||
batch_size = 8, | ||
epochs=100, | ||
val_samples = 40,): | ||
|
||
img_size = (image_height,image_width) | ||
input_img_paths = sorted( | ||
[ | ||
os.path.join(input_dir, fname) | ||
for fname in os.listdir(input_dir) | ||
] | ||
) | ||
mask_img_paths = sorted( | ||
[ | ||
os.path.join(mask_dir, fname) | ||
for fname in os.listdir(mask_dir) | ||
] | ||
) | ||
random.Random(1337).shuffle(input_img_paths) | ||
random.Random(1337).shuffle(mask_img_paths) | ||
train_input_img_paths = input_img_paths[:-val_samples] | ||
train_mask_img_paths = mask_img_paths[:-val_samples] | ||
val_input_img_paths = input_img_paths[-val_samples:] | ||
val_mask_img_paths = mask_img_paths[-val_samples:] | ||
|
||
# Instantiate data Sequences for each split | ||
train_gen = Loader( | ||
batch_size, img_size, train_input_img_paths, train_mask_img_paths,image_channel,num_classes | ||
) | ||
val_gen = Loader(batch_size, img_size, val_input_img_paths, val_mask_img_paths,image_channel,num_classes) | ||
|
||
model=SE_UResNet((image_height,image_width,image_channel),num_classes, dropout_rate=0.0, batch_norm=True) | ||
|
||
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy']) | ||
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( | ||
filepath=weight_dir+"\\weights.h5", | ||
save_weights_only=True, | ||
monitor='val_loss', | ||
mode='min', | ||
save_best_only=True | ||
) | ||
rlp =tf.keras.callbacks.ReduceLROnPlateau( | ||
monitor='val_loss', | ||
factor=0.001, | ||
patience=10, | ||
verbose=1, | ||
mode='auto', | ||
min_delta=0.00005) | ||
#es=tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=15) | ||
history = model.fit(train_gen,validation_data=val_gen,epochs=epochs,callbacks=[checkpoint_callback,rlp]) | ||
|
||
if __name__ == "__main__": | ||
img_dir = sys.argv[1] | ||
mask_dir = sys.argv[2] | ||
weight_dir = sys.argv[3] | ||
main(img_dir,mask_dir,weight_dir) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
from utils import * | ||
import tensorflow as tf | ||
def SE_UResNet(input_shape, NUM_CLASSES=1, dropout_rate=0.0, batch_norm=True): | ||
''' | ||
Attention UNet, | ||
''' | ||
# network structure | ||
FILTER_NUM = 32 # number of basic filters for the first layer | ||
FILTER_SIZE = 3 # size of the convolutional filter | ||
UP_SAMP_SIZE = 2 # size of upsampling filters | ||
|
||
inputs = layers.Input(input_shape, dtype=tf.float32) | ||
|
||
# Downsampling layers | ||
# DownRes 1, convolution + pooling | ||
conv_128 = conv_block(inputs, FILTER_SIZE, FILTER_NUM, 0.2, 1, batch_norm) | ||
pool_64 = layers.MaxPooling2D(pool_size=(2,2))(conv_128) | ||
# DownRes 2 | ||
conv_64 = conv_block(pool_64, FILTER_SIZE, 2*FILTER_NUM, 0.2, 2, batch_norm) | ||
pool_32 = layers.MaxPooling2D(pool_size=(2,2))(conv_64) | ||
# DownRes 3 | ||
conv_32 = conv_block(pool_32, FILTER_SIZE, 4*FILTER_NUM,0.2, 3, batch_norm) | ||
pool_16 = layers.MaxPooling2D(pool_size=(2,2))(conv_32) | ||
# DownRes 4 | ||
conv_16 = conv_block(pool_16, FILTER_SIZE, 8*FILTER_NUM,0.2,4, batch_norm) | ||
pool_8 = layers.MaxPooling2D(pool_size=(2,2))(conv_16) | ||
# DownRes 5, convolution only | ||
conv_8 = conv_block(pool_8, FILTER_SIZE, 16*FILTER_NUM, 0.2,5, batch_norm) | ||
|
||
# W-net layers | ||
attw_16 = se_block(conv_16, 8*FILTER_NUM) | ||
upw_16 = layers.UpSampling2D(size=(UP_SAMP_SIZE, UP_SAMP_SIZE), data_format="channels_last")(conv_8) | ||
upw_16 = layers.concatenate([upw_16, attw_16], axis=3) | ||
up_convw_16 = resb(upw_16, FILTER_SIZE, 8*FILTER_NUM, 0.2,6, batch_norm) | ||
|
||
poolw_8 = layers.MaxPooling2D(pool_size=(2,2))(up_convw_16) | ||
convw_16 = conv_block(poolw_8, FILTER_SIZE, 16*FILTER_NUM, 0.2,7, batch_norm) | ||
|
||
# UpRes 6, attention gated concatenation + upsampling + double residual convolution | ||
att_16 = se_block(up_convw_16, 8*FILTER_NUM) | ||
up_16 = layers.UpSampling2D(size=(UP_SAMP_SIZE, UP_SAMP_SIZE), data_format="channels_last")(convw_16) | ||
up_16 = layers.concatenate([up_16, att_16], axis=3) | ||
up_conv_16 = conv_block(up_16, FILTER_SIZE, 8*FILTER_NUM, 0.2,8, batch_norm) | ||
# UpRes 7 | ||
att_32 = se_block(conv_32, 4*FILTER_NUM) | ||
up_32 = layers.UpSampling2D(size=(UP_SAMP_SIZE, UP_SAMP_SIZE), data_format="channels_last")(up_conv_16) | ||
up_32 = layers.concatenate([up_32, att_32], axis=3) | ||
up_conv_32 =conv_block(up_32, FILTER_SIZE, 4*FILTER_NUM, dropout_rate,9, batch_norm) | ||
# UpRes 8 | ||
att_64 = se_block(conv_64, 2*FILTER_NUM) | ||
up_64 = layers.UpSampling2D(size=(UP_SAMP_SIZE, UP_SAMP_SIZE), data_format="channels_last")(up_conv_32) | ||
up_64 = layers.concatenate([up_64, att_64], axis=3) | ||
up_conv_64 = conv_block(up_64, FILTER_SIZE, 2*FILTER_NUM, 0.2,10, batch_norm) | ||
# UpRes 9 | ||
att_128 = se_block(conv_128, FILTER_NUM) | ||
up_128 = layers.UpSampling2D(size=(UP_SAMP_SIZE, UP_SAMP_SIZE), data_format="channels_last")(up_conv_64) | ||
up_128 = layers.concatenate([up_128, att_128], axis=3) | ||
up_conv_128 = conv_block(up_128, FILTER_SIZE, FILTER_NUM, 0.2,11, batch_norm) | ||
|
||
# 1*1 convolutional layers | ||
conv_final = layers.Conv2D(NUM_CLASSES, kernel_size=(1,1))(up_conv_128) | ||
conv_final = layers.BatchNormalization(axis=3)(conv_final) | ||
conv_final = layers.Activation('sigmoid')(conv_final) #Change to softmax for multichannel | ||
|
||
# Model integration | ||
model = models.Model(inputs, conv_final, name="Attention_UWNet") | ||
return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
from tensorflow.keras import models, layers, regularizers | ||
from tensorflow.keras import backend as K | ||
import tensorflow as tf | ||
|
||
def conv_block(x, filter_size, size, dropout,num, batch_norm=False): | ||
|
||
conv = layers.Conv2D(size, (filter_size, filter_size), padding="same")(x) | ||
if batch_norm is True: | ||
conv = layers.BatchNormalization(axis=3)(conv) | ||
conv = layers.Activation("relu")(conv) | ||
|
||
conv = layers.Conv2D(size, (filter_size, filter_size), padding="same",name="conv"+str(num))(conv) | ||
if batch_norm is True: | ||
conv = layers.BatchNormalization(axis=3)(conv) | ||
conv = layers.Activation("relu")(conv) | ||
|
||
if dropout > 0: | ||
conv = layers.Dropout(dropout)(conv) | ||
|
||
return conv | ||
|
||
def se_block(x,r): | ||
copy=x | ||
gap=layers.GlobalAveragePooling2D()(x) | ||
flat=layers.Flatten()(gap) | ||
dense=layers.Dense(flat.shape[-1]//r, activation = 'relu')(gap) | ||
dense=layers.Dense(flat.shape[-1], activation = 'sigmoid')(dense) | ||
m =layers.multiply([dense,copy]) | ||
return m | ||
|
||
def resb(x, filter_size, size, dropout,num, batch_norm=False): | ||
# copy tensor to variable called x_skip | ||
x_skip = x | ||
x_skip=layers.Conv2D(1, (1, 1), padding="same")(x_skip) | ||
print(x_skip.shape) | ||
# Layer 1 | ||
x = layers.Conv2D(size, (filter_size, filter_size), padding="same")(x) | ||
if batch_norm is True: | ||
x = layers.BatchNormalization(axis=3)(x) | ||
x = layers.Activation("relu")(x) | ||
if dropout > 0: | ||
x = layers.Dropout(dropout)(x) | ||
print(x.shape) | ||
# Layer 2 | ||
x = layers.Conv2D(size, (filter_size, filter_size), padding="same")(x) | ||
if batch_norm is True: | ||
x = layers.BatchNormalization(axis=3)(x) | ||
x = layers.Activation("relu")(x) | ||
if dropout > 0: | ||
x = layers.Dropout(dropout)(x) | ||
print(x.shape) | ||
# Add Residue | ||
x = tf.keras.layers.Add()([x, x_skip]) | ||
x = tf.keras.layers.Activation('relu')(x) | ||
return x |