Skip to content

Commit

Permalink
First draft of spectrometer example.
Browse files Browse the repository at this point in the history
  • Loading branch information
cemitch99 committed Apr 23, 2024
1 parent f70ba83 commit 1b5a381
Show file tree
Hide file tree
Showing 4 changed files with 311 additions and 0 deletions.
78 changes: 78 additions & 0 deletions examples/achromatic_spectrometer/README.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
.. _examples-fodo:

FODO Cell
=========

Stable FODO cell with a zero-current phase advance of 67.8 degrees.

The matched Twiss parameters at entry are:

* :math:`\beta_\mathrm{x} = 2.82161941` m
* :math:`\alpha_\mathrm{x} = -1.59050035`
* :math:`\beta_\mathrm{y} = 2.82161941` m
* :math:`\alpha_\mathrm{y} = 1.59050035`

We use a 2 GeV electron beam with initial unnormalized rms emittance of 2 nm.

The second moments of the particle distribution after the FODO cell should coincide with the second moments of the particle distribution before the FODO cell, to within the level expected due to noise due to statistical sampling.

In this test, the initial and final values of :math:`\sigma_x`, :math:`\sigma_y`, :math:`\sigma_t`, :math:`\epsilon_x`, :math:`\epsilon_y`, and :math:`\epsilon_t` must agree with nominal values.


Run
---

This example can be run **either** as:

* **Python** script: ``python3 run_fodo.py`` or
* ImpactX **executable** using an input file: ``impactx input_fodo.in``

For `MPI-parallel <https://www.mpi-forum.org>`__ runs, prefix these lines with ``mpiexec -n 4 ...`` or ``srun -n 4 ...``, depending on the system.

.. tab-set::

.. tab-item:: Python: Script

.. literalinclude:: run_fodo.py
:language: python3
:caption: You can copy this file from ``examples/fodo/run_fodo.py``.

.. tab-item:: Executable: Input File

.. literalinclude:: input_fodo.in
:language: ini
:caption: You can copy this file from ``examples/fodo/input_fodo.in``.


Analyze
-------

We run the following script to analyze correctness:

.. dropdown:: Script ``analysis_fodo.py``

.. literalinclude:: analysis_fodo.py
:language: python3
:caption: You can copy this file from ``examples/fodo/analysis_fodo.py``.


Visualize
---------

You can run the following script to visualize the beam evolution over time:

.. dropdown:: Script ``plot_fodo.py``

.. literalinclude:: plot_fodo.py
:language: python3
:caption: You can copy this file from ``examples/fodo/plot_fodo.py``.

.. figure:: https://user-images.githubusercontent.com/1353258/180287840-8561f6fd-278f-4856-abd8-04fbdb78c8ff.png
:alt: focusing, defocusing and preserved emittane in our FODO cell benchmark.

FODO transversal beam width and emittance evolution

.. figure:: https://user-images.githubusercontent.com/1353258/180287845-eb0210a7-2500-4aa9-844c-67fb094329d3.png
:alt: focusing, defocusing and phase space rotation in our FODO cell benchmark.

FODO transversal beam width and phase space evolution
98 changes: 98 additions & 0 deletions examples/achromatic_spectrometer/analysis_spectrometer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#


import numpy as np
import openpmd_api as io
from scipy.stats import moment


def get_moments(beam):
"""Calculate standard deviations of beam position & momenta
and emittance values
Returns
-------
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t
"""
sigx = moment(beam["position_x"], moment=2) ** 0.5 # variance -> std dev.
sigpx = moment(beam["momentum_x"], moment=2) ** 0.5
sigy = moment(beam["position_y"], moment=2) ** 0.5
sigpy = moment(beam["momentum_y"], moment=2) ** 0.5
sigt = moment(beam["position_t"], moment=2) ** 0.5
sigpt = moment(beam["momentum_t"], moment=2) ** 0.5

epstrms = beam.cov(ddof=0)
emittance_x = (sigx**2 * sigpx**2 - epstrms["position_x"]["momentum_x"] ** 2) ** 0.5
emittance_y = (sigy**2 * sigpy**2 - epstrms["position_y"]["momentum_y"] ** 2) ** 0.5
emittance_t = (sigt**2 * sigpt**2 - epstrms["position_t"]["momentum_t"] ** 2) ** 0.5

return (sigx, sigy, sigt, emittance_x, emittance_y, emittance_t)


# initial/final beam
series = io.Series("diags/openPMD/monitor.h5", io.Access.read_only)
last_step = list(series.iterations)[-1]
initial = series.iterations[1].particles["beam"].to_df()
final = series.iterations[last_step].particles["beam"].to_df()

# compare number of particles
num_particles = 10000
assert num_particles == len(initial)
assert num_particles == len(final)

print("Initial Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(initial)
print(f" sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
f" emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0 # ignored
rtol = 2.2 * num_particles**-0.5 # from random sampling of a smooth distribution
print(f" rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
[sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
[
7.5451170454175073e-005,
7.5441588239210947e-005,
9.9775878164077539e-004,
1.9959540393751392e-009,
2.0175015289132990e-009,
2.0013820193294972e-006,
],
rtol=rtol,
atol=atol,
)


print("")
print("Final Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(final)
print(f" sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
f" emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0 # ignored
rtol = 2.2 * num_particles**-0.5 # from random sampling of a smooth distribution
print(f" rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
[sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
[
7.4790118496224206e-005,
7.5357525169680140e-005,
9.9775879288128088e-004,
1.9959539836392703e-009,
2.0175014668882125e-009,
2.0013820380883801e-006,
],
rtol=rtol,
atol=atol,
)
64 changes: 64 additions & 0 deletions examples/achromatic_spectrometer/input_spectrometer.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
###############################################################################
# Particle Beam(s)
###############################################################################
beam.npart = 10000
beam.units = static
beam.kin_energy = 1.0e3
beam.charge = 1.0e-9
beam.particle = electron
beam.distribution = waterbag
beam.sigmaX = 3.162277660e-6
beam.sigmaY = 3.162277660e-6
beam.sigmaT = 1.0e-3
beam.sigmaPx = 3.16227766017e-4
beam.sigmaPy = 3.16227766017e-4
beam.sigmaPt = 2.0e-2
beam.muxpx = 0.0
beam.muypy = 0.0
beam.mutpt = 0.0


###############################################################################
# Beamline: lattice elements and segments
###############################################################################
lattice.elements = monitor bend1 plasma_lens drift1 monitor
lattice.nslice = 25

monitor.type = beam_monitor
monitor.backend = h5

bend1.type = sbend_exact
bend1.ds = 1.0
bend1.phi = 10.0
bend1.B = 0.0

plasma_lens.type = line
plasma_lens.elements = plend dr pl dr pl dr pl dr pl dr p1 dr p1 dr p1 dr p1 dr p1 dr p1end

p1end.type = tapered_plasma_lens
p1end.k = 125.0
p1end.taper = 11.488289081903567
p1end.units = 0

p1.type = tapered_plasma_lens
p1.k = 250.0 #focal length 0.5 m
p1.taper = 11.488289081903567
p1.units = 0

dr.type = drift
dr.ds = 0.25

drift1.type = drift
drift1.ds = 1.0

###############################################################################
# Algorithms
###############################################################################
algo.particle_shape = 2
algo.space_charge = false


###############################################################################
# Diagnostics
###############################################################################
diag.slice_step_diagnostics = true
71 changes: 71 additions & 0 deletions examples/achromatic_spectrometer/run_spectrometer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#
# -*- coding: utf-8 -*-

from impactx import ImpactX, distribution, elements

sim = ImpactX()

# set numerical parameters and IO control
sim.particle_shape = 2 # B-spline order
sim.space_charge = False
# sim.diagnostics = False # benchmarking
sim.slice_step_diagnostics = True

# domain decomposition & space charge mesh
sim.init_grids()

# load a 2 GeV electron beam with an initial
# unnormalized rms emittance of 2 nm
kin_energy_MeV = 2.0e3 # reference energy
bunch_charge_C = 1.0e-9 # used with space charge
npart = 10000 # number of macro particles

# reference particle
ref = sim.particle_container().ref_particle()
ref.set_charge_qe(-1.0).set_mass_MeV(0.510998950).set_kin_energy_MeV(kin_energy_MeV)

# particle bunch
distr = distribution.Waterbag(
sigmaX=3.9984884770e-5,
sigmaY=3.9984884770e-5,
sigmaT=1.0e-3,
sigmaPx=2.6623538760e-5,
sigmaPy=2.6623538760e-5,
sigmaPt=2.0e-3,
muxpx=-0.846574929020762,
muypy=0.846574929020762,
mutpt=0.0,
)
sim.add_particles(bunch_charge_C, distr, npart)

# add beam diagnostics
monitor = elements.BeamMonitor("monitor", backend="h5")

# design the accelerator lattice)
ns = 25 # number of slices per ds in the element
fodo = [
monitor,
elements.Drift(ds=0.25, nslice=ns),
monitor,
elements.Quad(ds=1.0, k=1.0, nslice=ns),
monitor,
elements.Drift(ds=0.5, nslice=ns),
monitor,
elements.Quad(ds=1.0, k=-1.0, nslice=ns),
monitor,
elements.Drift(ds=0.25, nslice=ns),
monitor,
]
# assign a fodo segment
sim.lattice.extend(fodo)

# run simulation
sim.evolve()

# clean shutdown
sim.finalize()

0 comments on commit 1b5a381

Please sign in to comment.