TensorFlow 2.X reimplementation of CvT: Introducing Convolutions to Vision Transformers, Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
- Exact TensorFlow reimplementation of official PyTorch repo, including
timm
modules used by authors, preserving models and layers structure. - ImageNet pretrained weights ported from PyTorch official implementation.
Convolutional vision Transformers (CvT), improves Vision Transformers (ViT) in performance and efficienty by introducing convolutions into ViT to yield the best of both designs. This is accomplished through two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs) to the ViT architecture (e.g. shift, scale, and distortion invariance) while maintaining the merits of Transformers (e.g. dynamic attention, global context, and better generalization). Moreover the achieved results show that the positional encoding, a crucial component in existing Vision Transformers, can be safely removed in the model, simplifying the design for higher resolution vision tasks.
The pipeline of the CvT architecture. (a) Overall architecture, showing the hierarchical multi-stage structure facilitated by the Convolutional Token Embedding layer. (b) Details of the Convolutional Transformer Block, which contains the convolution projection as the first layer.
TensorFlow implementation and ImageNet ported weights have been compared to the official PyTorch implementation on ImageNet-V2 test set.
Configuration | Resolution | Top-1 (Original) | Top-1 (Ported) | Top-5 (Original) | Top-5 (Ported) | #Params |
---|---|---|---|---|---|---|
CvT-13 | 224x224 | 69.81 | 69.81 | 89.13 | 89.13 | 20M |
CvT-13 | 384x384 | 71.31 | 71.31 | 89.97 | 89.97 | 20M |
CvT-21 | 224x224 | 71.18 | 71.17 | 89.31 | 89.31 | 32M |
CvT-21 | 384x384 | 71.61 | 71.61 | 89.71 | 89.71 | 32M |
Configuration | Resoluton | Top-1 (Original) | Top-1 (Ported) | Top-5 (Original) | Top-5 (Ported) | #Params |
---|---|---|---|---|---|---|
CvT-13 | 384x284 | 71.76 | 71.76 | 91.39 | 91.39 | 20M |
CvT-21 | 384x384 | 74.97 | 74.97 | 92.63 | 92.63 | 32M |
CvT-W24 | 384x384 | 78.15 | 78.15 | 94.48 | 94.48 | 277M |
Max metrics difference: 9e-5
.
- Install from PyPI
pip install cvt-tensorflow
- Install from Github
pip install git+https://github.com/EMalagoli92/CvT-TensorFlow
- Clone the repo and install necessary packages
git clone https://github.com/EMalagoli92/CvT-TensorFlow.git
pip install -r requirements.txt
Tested on Ubuntu 20.04.4 LTS x86_64, python 3.9.7.
- Define a custom CvT configuration.
from cvt_tensorflow import CvT
# Define a custom CvT configuration
model = CvT(
in_chans=3,
num_classes=1000,
classifier_activation="softmax",
data_format="channels_last",
spec={
"INIT": "trunc_norm",
"NUM_STAGES": 3,
"PATCH_SIZE": [7, 3, 3],
"PATCH_STRIDE": [4, 2, 2],
"PATCH_PADDING": [2, 1, 1],
"DIM_EMBED": [64, 192, 384],
"NUM_HEADS": [1, 3, 6],
"DEPTH": [1, 2, 10],
"MLP_RATIO": [4.0, 4.0, 4.0],
"ATTN_DROP_RATE": [0.0, 0.0, 0.0],
"DROP_RATE": [0.0, 0.0, 0.0],
"DROP_PATH_RATE": [0.0, 0.0, 0.1],
"QKV_BIAS": [True, True, True],
"CLS_TOKEN": [False, False, True],
"QKV_PROJ_METHOD": ["dw_bn", "dw_bn", "dw_bn"],
"KERNEL_QKV": [3, 3, 3],
"PADDING_KV": [1, 1, 1],
"STRIDE_KV": [2, 2, 2],
"PADDING_Q": [1, 1, 1],
"STRIDE_Q": [1, 1, 1],
},
)
- Use a predefined CvT configuration.
from cvt_tensorflow import CvT
model = CvT(
configuration="cvt-21", data_format="channels_last", classifier_activation="softmax"
)
model.build((None, 224, 224, 3))
print(model.summary())
Model: "cvt-21"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
stage0 (VisionTransformer) multiple 62080
stage1 (VisionTransformer) multiple 1920576
stage2 (VisionTransformer) ((None, 384, 14, 14), 29296128
(None, 1, 384))
norm (LayerNorm_) (None, 1, 384) 768
head (Linear_) (None, 1000) 385000
pred (Activation) (None, 1000) 0
=================================================================
Total params: 31,664,552
Trainable params: 31,622,696
Non-trainable params: 41,856
_________________________________________________________________
- Train from scratch the model.
# Example
model.compile(
optimizer="sgd",
loss="sparse_categorical_crossentropy",
metrics=["accuracy", "sparse_top_k_categorical_accuracy"],
)
model.fit(x, y)
- Use ported ImageNet pretrained weights
# Example
from cvt_tensorflow import CvT
# Use cvt-13-384x384_22k ImageNet pretrained weights
model = CvT(
configuration="cvt-13",
pretrained=True,
pretrained_resolution=384,
pretrained_version="22k",
classifier_activation="softmax",
)
y_pred = model(image)
CvT (Official PyTorch implementation)
@article{wu2021cvt,
title={Cvt: Introducing convolutions to vision transformers},
author={Wu, Haiping and Xiao, Bin and Codella, Noel and Liu, Mengchen and Dai, Xiyang and Yuan, Lu and Zhang, Lei},
journal={arXiv preprint arXiv:2103.15808},
year={2021}
}
This work is made available under the MIT License