(Supporting Submission for the QUATIC 2021 Paper for kNN-Averaging)
Authors
Stefan Klikovits and Paolo Arcaini;
National Institute of Informatics, Tokyo, Japan
Email: {lastname}@nii.ac.jp
Venue
14th International Conference on the Quality of Information and Communications Technology (QUATIC)
Quality in Cyber-physical Systems Track
September 8-11, 2021
Faro, Portugal Online
Thanks
The authors are supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST. Funding Reference number: 10.13039/501100009024 ERATO.
S. Klikovits is also supported by Grant-in-Aid for Research Activity Start-up 20K23334, JSPS.
(Preliminary) Bibtex:
@InProceedings{KlikovitsA2021knnAveraging,
author={Klikovits, Stefan and Arcaini, Paolo},
title= {{KNN-Averaging for Noisy Multi-Objective Optimisation}},
editor={Paiva, Ana C. R. and Cavalli, Ana Rosa and Ventura Martins, Paula and P{\'e}rez-Castillo, Ricardo},
booktitle= {Proc. 14th Intl. Conf. on the Quality of Information and Communications Technology (QUATIC)},
publisher= {Springer International Publishing},
pages={503--518},
series= {Communications in Computer and Information Science (CCIS)},
volume={1439},
isbn={978-3-030-85347-1},
location= {Faro, Portugal (Online)},
doi={10.1007/978-3-030-85347-1_36},
year={2021}
}
KlikovitsArcaini-KNNAvgForNoisyNoisyMOO.pdf
Preprint of the paper.Klikovits-Arcaini2021_KNNAvg_QUATIC_slides.pdf
Slide deck used for the presentation at QUATIC.requirements.txt
: Python dependencies. Install viapip install -r requirements.txt
main.py
: Entrypoint for search. To alter search settings, modifycreate_settings_and_run()
function.knn_wrapper.py
Wrapper for Pymoo benchmark problems. Use viaknn_wrapper.wrap_problem(knn_wrapper.KNNAvgMixin, zdt.ZDT1, ...)
.output/
This will be where the search will put the output data (currently empty).result_plots/
Supporting data and result plots for the publication. Subfolders/filenames provide information about search settingsresults_plots/KNNAvgMixin_ZDT1_V2/
ZDT1 benchmark with 2 search variablesresults_plots/KNNAvgMixin_ZDT1_V4/
ZDT1 benchmark with 4 search variablesresults_plots/KNNAvgMixin_ZDT1_V10/
ZDT1 benchmark with 10 search variablesresults_plots/KNNAvgMixin_ZDT2_V2/
ZDT2 benchmark with 2 search variablesresults_plots/KNNAvgMixin_ZDT2_V4/
ZDT2 benchmark with 4 search variablesresults_plots/KNNAvgMixin_ZDT2_V10/
ZDT2 benchmark with 10 search variablesresults_plots/KNNAvgMixin_ZDT3_V2/
ZDT3 benchmark with 2 search variablesresults_plots/KNNAvgMixin_ZDT3_V4/
ZDT3 benchmark with 4 search variablesresults_plots/KNNAvgMixin_ZDT3_V10/
ZDT3 benchmark with 10 search variables