Skip to content

AutoKernel 是一个简单易用,低门槛的自动算子优化工具,提高深度学习算法部署效率。

License

Notifications You must be signed in to change notification settings

Eagleflag88/AutoKernel

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AutoKernel

简介

随着人工智能的普及,深度学习网络的不断涌现,为了让各硬件(CPU, GPU, NPU,...)能够支持深度学习应用,各硬件芯片需要软件库去支持高性能的深度学习张量运算。目前,这些高性能计算库主要由资深HPC工程师(高性能计算优化工程师)进行开发,为了加快开发进程,缩短深度学习应用落地周期,自动化算子优化是一个趋势。

AutoKernel是由OPEN AI LAB提出的高性能算子自动优化工具,可以自动优化调度策略、生成底层优化代码,大幅减少各硬件芯片算子开发成本,提升算子优化效率,让工程师更快实现深度学习算法在各硬件芯片上的高性能部署。

AutoKernel特色

  • 低门槛
  • 简单易用
  • 高效率

AutoKernel架构

AutoKernel 架构

AutoKernel分为三个模块:

  • 算子生成器:

    该模块使用了开源项目Halide;Halide是业界广泛使用的自动代码生成项目,它首次提出将计算和调度分离。该模块的输入是和硬件无关的算子计算描述,输出是相应后端的优化汇编代码/目标文件;

  • 自动搜索模块:

    该模块可以通过最优化算法/搜索算法/机器学习/强化学习搜索出相应后端的最优算子的调度策略参数(该模块仍在开发中);

  • 算子部署插件( AutoKernel Plugin):

    Tengine是OPEN AILAB开源的深度学习推理框架,实现了AI算法在不同硬件的快速高效部署。该模块实现了将自动生成的优化算子代码以plugin的形式一键集成到Tengine中,实现自动优化算子的一键部署;

快速使用 Quick Start

我们提供了AutoKernel的docker镜像,以便开发者可以快速搭建开发环境。

# 拉取镜像(可能需要一段时间,请耐心等待)
docker pull openailab/autokernel
# 启动容器,进入开发环境
docker run -it openailab/autokernel /bin/bash

docker里面提供了安装好的Halide和Tengine:

/workspace/Halide	# Halide
/workspace/Tengine  # Tengine

克隆AutoKernel项目:

git clone https://github.com/OAID/AutoKernel.git

我们首先看看autokernel_plugin/src/的文件目录:

autokernel_plugin/src/
|-- CMakeLists.txt
|-- direct_conv
|   |-- build.sh
|   |-- direct_conv.cpp
|   |-- direct_conv.h
|   |-- direct_conv_gen.cc
|-- im2col_conv
|   |-- build.sh
|   |-- im2col_conv.cpp
|   |-- im2col_conv.h
|   `-- im2col_conv_gen.cc
`-- plugin_init.cpp

可以看到src目录下有两个文件夹,每个文件夹的目录下有:

  • xxx_gen.cc, 用Halide语言的算子描述(algorithm)和调度策略(schedule)
  • build.sh 用于编译xxx_gen
  • xxx.h 和 xxx.cpp是用Tengine算子接口封装的算子实现

一键生成算子汇编代码:

cd AutoKernel/autokernel_plugin
chmod +x -R .
./scripts/generate.sh  #自动生成算子汇编文件

运行完这一步,可以看到原来的目录下多了两个自动生成的文件:

|-- im2col_conv
|   |-- halide_im2col_conv.h
|   |-- halide_im2col_conv.s
|-- direct_conv
|   |-- halide_direct_conv.h
|   `-- halide_direct_conv.s

接下来使用自动生成的文件,把Autokernel注册进tengine,一键编译 libAutoKernel.so

mkdir build
cd build
cmake ..
make -j4

生成的库在/workspace/AutoKernel/autokernel_plugin/build/src/libautokernel.so

运行测试,在测试代码中调用load_tengine_plugin():

cd AutoKernel/autokernel_plugin
./build/tests/tm_classification -n squeezenet

分类网络的运行结果如下:

AutoKernel plugin inited
function:autokernel_plugin_init executed

...

Repeat 1 times, avg time per run is 55.932 ms
max time is 55.932 ms, min time is 55.932 ms
--------------------------------------
0.2732 - "n02123045 tabby, tabby cat"
0.2676 - "n02123159 tiger cat"
0.1810 - "n02119789 kit fox, Vulpes macrotis"
0.0818 - "n02124075 Egyptian cat"
0.0724 - "n02085620 Chihuahua"
--------------------------------------
ALL TEST DONE

可以看到,输出结果显示调用了AutoKernel plugin里的函数。

开发者指南

Roadmap

License

技术讨论

About

AutoKernel 是一个简单易用,低门槛的自动算子优化工具,提高深度学习算法部署效率。

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 86.2%
  • C 13.5%
  • Other 0.3%