Skip to content

This Repository will be destinated to the study of Offshore Well Modeling. The model that will be implemented is called Fast Offshore Wells Model (FOWM) from the paper: Fast Offshore Wells Model (FOWM): A practical dynamic model formultiphase oil production systems in deepwater and ultra-deepwaterscenarios

License

Notifications You must be signed in to change notification settings

EduardoPach/Fast_Offshore_Wells_Model_Julia

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fast Offshore Wells Model (FOWM)

In this repo the FOWM, from Diehl et al., 2017, will be replicated using Julia Programming Language.

System Representation

Here is a representation of the system available in the work of Diehl et al., 2017

Model

$$\dfrac{dm_{ga}}{dt} = W_{gc} - W_{iV}$$ (1) $$\dfrac{dm_{gt}}{dt} = W_r\alpha_{gw} + W_{iV}-W_{whg}$$ (2) $$\dfrac{dm_{lt}}{dt} = W_r(1-\alpha_{gw}) - W_{whl}$$ (3) $$\dfrac{dm_{gb}}{dt} = (1-E)W_{whg}-W_g$$ (4) $$\dfrac{dm_{gr}}{dt} = EW_{whg}+W_g-W_{gout}$$ (5) $$\dfrac{dm_{lr}}{dt} = W_{whl}-W_{lout}$$ (6)

Being:

Variables Description
$m_{ga}$ Gas mass in the annualar
$m_{gt}$ Gas mass in the tubbing
$m_{lt}$ Liq mass in the tubing
$m_{gb}$ Gas mass in the bubble
$m_{gr}$ Gas mass in the flowline
$m_{lr}$ Liquid mass in the flowline
$W_{iV}$ Gas mass flow from annular to tubing
$W_{r}$ Reservoir to the bottom hole mass flow
$W_{whg}$ Gas mass flow at Xmas Tree
$W_{whl}$ Liq mass flow at Xmas Tree
$W_{gc}$ Gas lift mass flow annular
$W_{g}$ Gas mass flow at the virtual valve
$W_{gout}$ Gas mass flow through topside valve (Choke)
$W_{lout}$ Gas mass flow through topside valve (Choke)
$E$ Mass fraction of gas bypassing the bubble
$\alpha_{gw}$ Gas mass fraction at resorvoir's pressure and temperature


Where:

$$W_{iV} = K_a\sqrt{\rho_{ai}(P_{ai}-P_{tb})}$$ (7) $$W_{r} = K_r \left [1 - 0.2\dfrac{P_{bh}}{P_{r}} - \left(0.8\dfrac{P_{bh}}{P_r}\right)^2 \right]$$ (8) $$W_{whg} = K_w\sqrt{\rho_{L}(P_{tt}-P_{rb})}\alpha_{gt}$$ (9) $$W_{whl} = K_w\sqrt{\rho_{L}(P_{tt}-P_{rb})}(1-\alpha_{gt})$$ (10) $$W_{g} = C_g(P_{eb} - P_{rb}) $$ (11) $$W_{gout} = \alpha_{gr} C_{out} z \sqrt{\rho_L(P_{rt}-P_{s})}$$ (12) $$W_{lout} = \alpha_{lr} C_{out} z \sqrt{\rho_L(P_{rt}-P_{s})}$$ (13)



Being:

Variables Description
$K_{a}$ Flow coefficient between annular and tubing
$K_{r}$ Resorvoir's flow coefficient
$K_{w}$ Flow coefficient at Xmas Tree
$\rho_{ai}$ Gas density in the annular
$\rho_{L}$ Liquid density (assumed constant)
$\alpha_{gt}$ Gas mass fraction in tubing
$\alpha_{gr}$ Gas mass fraction in the subsea pipeline
$\alpha_{lr}$ Liquid mass fraction in the subsea pipeline
$C_{g}$ Virtual valve flow constant
$C_{out}$ Choke valve constant
$z$ Choke valve opening fraction
$P_{r}$ Reservoir's Pressure
$P_{s}$ Pressure after Choke valve
$P_{rt}$ Pressure at the top of the riser
$P_{rb}$ Pressure at the flowline before the bubble
$P_{tt}$ Pressure at the top of tubing
$P_{eb}$ Bubble Pressure
$P_{ai}$ Pressure in the annular gas injection point to tubing
$P_{tb}$ Pressure in the gas injection point on the tubing side
$P_{bh}$ Pressure in the bottom hole


Where:

$$\rho_{ai} = \dfrac{MP_{ai}}{RT}$$ (14) $$\alpha_{gt} = \dfrac{m_{gt}}{m_{gt}+m_{lt}}$$ (15) $$\alpha_{gr} = \dfrac{m_{gr}}{m_{gr}+m_{lr}}$$ (16) $$\alpha_{lr} = 1-\alpha_{gr}$$ (17) $$P_{ai} = \left(\dfrac{RT}{V_aM} + \dfrac{gL_a}{V_a} \right)m_{ga} $$ (18) $$P_{tb} = P_{tt} + \rho_{mt}gH_{vgl}$$ (19) $$P_{bh} = P_{pdg} + \rho_{mres}g(H_t-H_{pdg})$$ (20) $$P_{pdg} = P_{tb} + \rho_{mres}g(H_{pdg}-H_{vgl})$$ (21) $$P_{tt} = \dfrac{\rho_{gt}RT}{M}$$ (22) $$P_{rb} = P_{rt}+\dfrac{(m_{lr}+m_{L,still})gsin(\theta)}{A_{ss}}$$ (23) $$P_{eb} = \dfrac{m_{gb}RT}{MV_{eb}}$$ (24) $$P_{rt} = \dfrac{m_{gr}RT}{M\left(\omega_{u}V_{ss}-\dfrac{m_{lr}+m_{L,still}}{\rho_L}\right)}$$ (25)



Being:

Variables Description
$R$ Universal gas constant
$T$ Average temperature
$M$ Gas molecular weight
$\rho_{mt}$ Mixture density
$\rho_{mres}$ Reservoir's density
$\rho_{gt}$ Gas density
$g$ Gravity acceleration
$V_{a}$ Annular volume
$V_{eb}$ Bubble Volume
$V_{ss}$ Pipe volume downstream virtual valve
$H_{t}$ Vertical length Xmas Tree - Bottom Hole
$H_{pdg}$ Vertical length Xmas Tree - PDG point
$H_{vgl}$ Vertical length Xmas Tree - Gas Lift
$A_{ss}$ Riser cross sectional area
$L_{a}$ Annular length
$m_{L,still}$ Minimum mass of liq in the subsea pipeline
$\omega_{u}$ Bubble Location (assistant parameter)
$\theta$ Average riser inclination


Where:

$$\rho_{mt} = \dfrac{m_{gt}+m_{lt}}{V_t}$$ (26) $$\rho_{gt} = \dfrac{m_{gt}}{V_{gt}}$$ (27) $$V_{gt} = V_t - \dfrac{m_{lt}}{\rho_L}$$ (28) $$A_{ss} = \dfrac{\pi D_{ss}^2}{4}$$ (29) $$V_{ss} = \dfrac{\pi D_{ss}^2L_r}{4}+\dfrac{\pi D_{ss}^2L_{fl}}{4}$$ (30) $$V_a = \dfrac{\pi D_{a}^2L_a}{4}$$ (31) $$V_t = \dfrac{\pi D_{t}^2L_t}{4}$$ (32)



Being:

Variables Description
$V_t$ Volume of tubing
$V_{gt}$ Gas volume in the tubing
$L_r$ Riser length
$L_{fl}$ Flowline length
$L_t$ Tubing length
$D_a$ Annular diameter
$D_t$ Tubing diameter
$D_{ss}$ Subsea pipeline diameter

Simulation

Parameters

Variables Value Unit
$\rho_L$ $900$ $kg/m^3$
$P_r$ $225$ $bar$
$P_s$ $10$ $bar$
$\alpha_{gw}$ $0.0188$ $-$
$\rho_{mres}$ $892$ $kg/m^3$
$M$ $18$ $kg/kmol$
$T$ $298$ $K$
$L_{r}$ $1569$ $m$
$L_{fl}$ $2928$ $m$
$L_{t}$ $1639$ $m$
$L_{a}$ $1118$ $m$
$H_{t}$ $1279$ $m$
$H_{pdg}$ $1117$ $m$
$H_{vgl}$ $916$ $m$
$D_{ss}$ $0.15$ $m$
$D_{t}$ $0.15$ $m$
$D_{a}$ $0.14$ $m$
$m_{L,still}$ $6.222\times 10^{+1}$ kg
$C_{g}$ $1.137\times 10^{-3}$ $-$
$C_{out}$ $2.039\times 10^{-3}$ $-$
$V_{eb}$ $6.098\times 10^{+1}$ $m^3$
$E$ $1.545\times 10^{-1}$ $-$
$K_{w}$ $6.876\times 10^{-4}$ $-$
$K_{a}$ $2.293\times 10^{-5}$ $-$
$K_{r}$ $1.269\times 10^{+2}$ $-$
$\omega_{u}$ $2.780\times 10^{0}$ $-$

About

This Repository will be destinated to the study of Offshore Well Modeling. The model that will be implemented is called Fast Offshore Wells Model (FOWM) from the paper: Fast Offshore Wells Model (FOWM): A practical dynamic model formultiphase oil production systems in deepwater and ultra-deepwaterscenarios

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages