I have a personal website now! You can find it here
And I have an Obsidian project with my ML-related notes.
I'm an economist by education and usually try to understand why things happen.
For a long time, I was fascinated by foreign languages and studied them: English (my native is Russian), German, Japanese, and Spanish.
Currently, I'm Data Scientist and an active Kaggler.
Also, I have a portfolio listing some of my projects, which include Kaggle kernels, pet-projects, and other things.
- Paper Review: STAR: Spatial-Temporal Augmentation with Text-to-Video Models for Real-World Video…
- Paper Review: Training Large Language Models to Reason in a Continuous Latent Space
- Paper Review: Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory…
- Paper Review: Byte Latent Transformer: Patches Scale Better Than Tokens
- Paper Review: Reverse Thinking Makes LLMs Stronger Reasoners
- [Перевод] Мой путь изучения иностранных языков: прошлое, настоящее и будущее
- Третья жизнь пет-проекта по распознаванию рукописных цифр
- Как мы не смогли создать медицинского чат-бота. История проекта, который так и не увидел свет
- Из экономистов в дата-сайнтисты или как стать лидером рейтинга Kaggle Notebooks
- Обзор на статью Visual Transformers — новый подход к тренировке моделей компьютерного зрения на основе visual tokens
2019:
- ML Training talks about gold winning solution in Kaggle Predicting Molecular Properties Competition
- An overview of 2019 year in Kaggle, Talk in Russian at ODS.AI event
- Data Halloween: predicting chaotic actions of clients. Talk in Russian at ODS.AI event
- Storytelling with data visualization: case of kaggle kernels. Talk in Russian at Data Fest 2019
- Interview with Kaggle Kernels Grandmaster #1: Artgor | Andrew Lukyanenko. Chai Time Data Science | player.fm link
- Kaggle: People, We’ve Gamified Progress
2020:
- Andrey Lukyanenko - Handwritten digit recognition w/ a twist & topic modelling over time
- Pair Programming: Deep Learning Model For Drug Classification With Andrey Lukyanenko
- DataFest 2020 talk: My Kaggle Story
- Overview of approaches to "Mechanisms of Action (MoA) Prediction" competition on Kaggle (3 weeks before the end of the competition)
- Metro Analysis and Visualization
- Writing reusable pipelines in Deep Learning | Mindhack! Summit
- December Lightning Talks. Training pipeline with Pytorch Lightning and Hydra
2021: