Skip to content

Mimic langchain to customize some tools for working with local models

License

Notifications You must be signed in to change notification settings

Fangzhou-Code/Utils

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Utils

Mimic langchain to customize some tools for working with local models

pypi网址

Here is an enhanced version of the LocalEmbeddings class that provides similar functionality to the OpenAI embedding model and includes more features and detailed comments in English and Chinese: | 以下是增强版的 LocalEmbeddings 类,它提供了与 OpenAI 嵌入模型类似的功能,并且包括更多特性和详细的中英文注释:

  • Initializing the Local Model | 初始化本地嵌入模型
# 1. 初始化本地嵌入模型 | Initialize local embedding model
# 使用 SentenceTransformer 模型
# Use a SentenceTransformer model
local_embeddings = EnhancedLocalEmbeddings(model_path="sentence-transformers/all-MiniLM-L6-v2")

# 使用 Hugging Face 模型(需要指定分词器路径)
# Use a Hugging Face model (requires tokenizer path)
local_embeddings_hf = EnhancedLocalEmbeddings(
    model_path="bert-base-uncased",
    tokenizer_path="bert-base-uncased"
)
  • Embedding Single Text | 嵌入单个文本
embedding = local_embeddings.embed_text("The quick brown fox jumps over the lazy dog.")
print("单文本嵌入结果 | Single text embedding:", embedding[:10])  # 打印前 10 个维度
  • Embedding Multiple Texts | 嵌入多个文本
texts = ["Text 1", "Text 2"]
embeddings = local_embeddings.embed_documents(texts)
print("多文本嵌入结果 | Multiple text embeddings:", [embedding[:10] for embedding in embeddings])
  • Embedding Single Texts Tsynchronously | 异步嵌入单个文本
import asyncio
async def async_example():
    embedding = await local_embeddings.aembed_text("Async embedding example.")
    print("异步单文本嵌入结果 | Async single text embedding:", embedding[:10])

asyncio.run(async_example())
  • Embedding Multipes Texts Tsynchronously | 异步嵌入单个文本
import asyncio

# 异步嵌入多个文本
async def async_example():
    texts = ["Text 1 for async.", "Text 2 for async."]
    embeddings = await local_embeddings.aembed_documents(texts)
    print("异步多文本嵌入结果 | Async multiple text embeddings:", [embedding[:10] for embedding in embeddings])

asyncio.run(async_example())
  • Embedded Query Text | 嵌入查询文本
query = "What is the meaning of life?"
query_embedding = local_embeddings.embed_query(query)
print("查询嵌入结果 | Query embedding:", query_embedding[:10])
  • Batch Embedding of Multiple Text | 批量嵌入多个文本
large_texts = ["Sample text " + str(i) for i in range(100)]
batch_embeddings = local_embeddings.embed_batch(large_texts, batch_size=16)
print("批量嵌入结果 | Batch embeddings:", [embedding[:10] for embedding in batch_embeddings[:3]])
  • Direct Call Example | 直接调用实例
texts = ["Direct call example 1.", "Direct call example 2."]
embeddings = local_embeddings(texts)
print("直接调用嵌入结果 | Direct call embeddings:", [embedding[:10] for embedding in embeddings])

About

Mimic langchain to customize some tools for working with local models

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages