Skip to content

Experimental results obtained with the MinCutPool layer as presented in the 2020 ICML paper "Spectral Clustering with Graph Neural Networks for Graph Pooling"

License

Notifications You must be signed in to change notification settings

FilippoMB/Spectral-Clustering-with-Graph-Neural-Networks-for-Graph-Pooling

Repository files navigation

Spectral Clustering with Graph Neural Networks for Graph Pooling

This code reproduces the experimental results obtained with the MinCutPool layer as presented in the ICML 2020 paper

Spectral Clustering with Graph Neural Networks for Graph Pooling
F. M. Bianchi*, D. Grattarola*, C. Alippi

The official Tensorflow implementation of the MinCutPool layer is in Spektral.

The PyTorch implementation of MinCutPool is in Pytorch Geometric.

Setup

The code is based on Python 3.5, TensorFlow 1.15, and Spektral 0.1.2. All required libraries are listed in requirements.txt and can be installed with

pip install -r requirements.txt

Image segmentation

Run Segmentation.py to perform hyper-segmentation, generate a Region Adjacency Graph from the resulting segments, and then cluster the nodes of the RAG graph with the MinCutPool layer.

Clustering

Run Clustering.py to cluster the nodes of a citation network. The datasets cora, citeseer, and pubmed can be selected. Results are provided in terms of homogeneity score, completeness score, and normalized mutual information (v-score).

Pytorch

Clustering_pytorch.py contains a basic implementation in Pytorch based on Pytorch Geometric.

Autoencoder

Run Autoencoder.py to train an autoencoder with bottleneck and compute the reconstructed graph. It is possible to switch between the ring and grid graphs, but also any other point clouds from the PyGSP library are supported. Results are provided in terms of the Mean Squared Error.

Graph Classification

Run Graph_Classification.py to train a graph classifier. Additional classification datasets are available here (drop them in data/classification/) and here (drop them in data/). Results are provided in terms of classification accuracy averaged over 10 runs.

Pytorch

A basic Pytorch implementation of the graph classification task can be found in this example from Pytorch Geometric.

Citation

Please, cite the original paper if you are using MinCutPool in your research

@inproceedings{bianchi2020mincutpool,
    title={Spectral Clustering with Graph Neural Networks for Graph Pooling},
    author={Bianchi, Filippo Maria and Grattarola, Daniele and Alippi, Cesare},
    booktitle={Proceedings of the 37th international conference on Machine learning},
    pages={2729-2738},
    year={2020},
    organization={ACM}
}

License

The code is released under the MIT License. See the attached LICENSE file.

About

Experimental results obtained with the MinCutPool layer as presented in the 2020 ICML paper "Spectral Clustering with Graph Neural Networks for Graph Pooling"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages