Skip to content

An API to allow developers to create applications using hyper local data on 27m homes, over 1m sale and rental listings, and 15 years of sold price data in the UK.

Notifications You must be signed in to change notification settings

Filippos-Filippidis/zoopla

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

zoopla

Build Status codecov

A python wrapper for the Zoopla API.

Zoopla has launched an open API to allow developers to create applications using hyper local data on 27m homes, over 1m sale and rental listings, and 15 years of sold price data.

Register for a user account and apply for an instant API key.

Browse the documentation to understand how to use the API and the specifications for the individual APIs.

Installation

$ pip install zoopla

Tests

Install the dev requirements:

$ pip install -r requirements.txt
Run py.test with your developer key (otherwise you won’t be able to hit the live
API upon which these tests depend).
$ py.test --api_key=<your-api-key> tests/ # pytest under Python 3+

Examples

Retrieve property listings for a given area.

from zoopla import Zoopla

zoopla = Zoopla(api_key='your_api_key')

search = zoopla.property_listings({
    'maximum_beds': 2,
    'page_size': 100,
    'listing_status': 'sale',
    'area': 'Blackley, Greater Manchester'
})

for result in search.listing:
    print(result.price)
    print(result.description)
    print(result.image_url)

Retrieve a list of house price estimates for the requested area.

zed_indices = zoopla.area_zed_indices({
    'area': 'Blackley, Greater Manchester',
    'output_type': 'area',
    'area_type': 'streets',
    'order': 'ascending',
    'page_number': 1,
    'page_size': 10
})

print(zed_indices.town)
print(zed_indices.results_url)

Generate a graph of values for an outcode over the previous 3 months and return the URL to the generated image.

area_graphs = zoopla.area_value_graphs({'area': 'SW11'})

print(area_graphs.average_values_graph_url)
print(area_graphs.value_trend_graph_url)

Retrieve the average sale price for houses in a particular area.

average = zoopla.average_area_sold_price({'area': 'SW11'})

print(average.average_sold_price_7year)
print(average.average_sold_price_5year)

Submit a viewing request to an agent regarding a particular listing.

session_id = zoopla.get_session_id()

arrange_viewing = zoopla.arrange_viewing({
    'session_id': session_id,
    'listing_id': 44863256,
    'name': 'Tester',
    'email': "zoopla_developer@mashery.com",
    'phone': '01010101',
    'phone_type': 'work',
    'best_time_to_call': 'anytime',
    'message': 'Hi, I seen your listing on zoopla.co.uk and I would love to arrange a viewing!'

})

Contributing

  • Fork the project and clone locally.
  • Create a new branch for what you're going to work on.
  • Push to your origin repository.
  • Include tests and update documentation if necessary.
  • Create a new pull request in GitHub.

About

An API to allow developers to create applications using hyper local data on 27m homes, over 1m sale and rental listings, and 15 years of sold price data in the UK.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%