Functional patterns for Java 8
Lambda was born out of a desire to use some of the same canonical functions (e.g. unfoldr
, takeWhile
, zipWith
) and functional patterns (e.g. Functor
and friends) that are idiomatic in other languages and make them available for Java.
Some things a user of lambda most likely values:
- Lazy evaluation
- Immutability by design
- Composition
- Higher-level abstractions
- Parametric polymorphism
Generally, everything that lambda produces is lazily-evaluated (except for terminal operations like reduce
), immutable (except for Iterator
s, since it's effectively impossible), composable (even between different arities, where possible), foundational (maximally contravariant), and parametrically type-checked (even where this adds unnecessary constraints due to a lack of higher-kinded types).
Although the library is currently (very) small, these values should always be the driving forces behind future growth.
Add the following dependency to your:
pom.xml
(Maven):
<dependency>
<groupId>com.jnape.palatable</groupId>
<artifactId>lambda</artifactId>
<version>1.5.4</version>
</dependency>
build.gradle
(Gradle):
compile group: 'com.jnape.palatable', name: 'lambda', version: '1.5.4'
First, the obligatory map
/filter
/reduce
example:
Integer sumOfEvenIncrements =
reduceLeft((x, y) -> x + y,
filter(x -> x % 2 == 0,
map(x -> x + 1, asList(1, 2, 3, 4, 5))));
//-> 12
Every function in lambda is curried, so we could have also done this:
Fn1<Iterable<Integer>, Integer> sumOfEvenIncrementsFn =
map((Integer x) -> x + 1)
.then(filter(x -> x % 2 == 0))
.then(reduceLeft((x, y) -> x + y));
Integer sumOfEvenIncrements = sumOfEvenIncrementsFn.apply(asList(1, 2, 3, 4, 5));
//-> 12
How about the positive squares below 100:
Iterable<Integer> positiveSquaresBelow100 =
takeWhile(x -> x < 100, map(x -> x * x, iterate(x -> x + 1, 1)));
//-> [1, 4, 9, 16, 25, 36, 49, 64, 81]
We could have also used unfoldr
:
Iterable<Integer> positiveSquaresBelow100 = unfoldr(x -> {
int square = x * x;
return square < 100 ? Optional.of(tuple(square, x + 1)) : Optional.empty();
}, 1);
//-> [1, 4, 9, 16, 25, 36, 49, 64, 81]
What if we want the cross product of a domain and codomain:
Iterable<Tuple2<Integer, String>> crossProduct =
take(10, cartesianProduct(asList(1, 2, 3), asList("a", "b", "c")));
//-> (1,"a"), (1,"b"), (1,"c"), (2,"a"), (2,"b"), (2,"c"), (3,"a"), (3,"b"), (3,"c")
Let's compose two functions:
Fn1<Integer, Integer> add = x -> x + 1;
Fn1<Integer, Integer> subtract = x -> x -1;
Fn1<Integer, Integer> noOp = add.then(subtract);
// same as
Fn1<Integer, Integer> alsoNoOp = subtract.compose(add);
And partially apply some:
Fn2<Integer, Integer, Integer> add = (x, y) -> x + y;
Fn1<Integer, Integer> add1 = add.apply(1);
add1.apply(2);
//-> 3
And have fun with 3s:
Iterable<Iterable<Integer>> multiplesOf3InGroupsOf3 =
take(10, inGroupsOf(3, unfoldr(x -> Optional.of(tuple(x * 3, x + 1)), 1)));
//-> [[3, 6, 9], [12, 15, 18], [21, 24, 27]]
Check out the tests or javadoc for more examples.
In addition to the functions above, lambda also supports a few first-class algebraic data types.
HLists are type-safe heterogeneous lists, meaning they can store elements of different types in the same list while facilitating certain type-safe interactions.
The following illustrates how the linear expansion of the recursive type signature for HList
prevents ill-typed expressions:
HCons<Integer, HCons<String, HNil>> hList = HList.cons(1, HList.cons("foo", HList.nil()));
System.out.println(hList.head()); // prints 1
System.out.println(hList.tail().head()); // prints "foo"
HNil nil = hList.tail().tail();
//nil.head() won't type-check
One of the primary downsides to using HList
s in Java is how quickly the type signature grows.
To address this, tuples in lambda are specializations of HList
s up to 5 elements deep, with added support for index-based accessor methods.
HNil nil = HList.nil();
SingletonHList<Integer> singleton = nil.cons(5);
Tuple2<Integer, Integer> tuple2 = singleton.cons(4);
Tuple3<Integer, Integer, Integer> tuple3 = tuple2.cons(3);
Tuple4<Integer, Integer, Integer, Integer> tuple4 = tuple3.cons(2);
Tuple5<Integer, Integer, Integer, Integer, Integer> tuple5 = tuple4.cons(1);
System.out.println(tuple2._1()); // prints 4
System.out.println(tuple5._5()); // prints 5
Additionally, HList
provides convenience static factory methods for directly constructing lists of up to 5 elements:
SingletonHList<Integer> singleton = HList.singletonHList(1);
Tuple2<Integer, Integer> tuple2 = HList.tuple(1, 2);
Tuple3<Integer, Integer, Integer> tuple3 = HList.tuple(1, 2, 3);
Tuple4<Integer, Integer, Integer, Integer> tuple4 = HList.tuple(1, 2, 3, 4);
Tuple5<Integer, Integer, Integer, Integer, Integer> tuple5 = HList.tuple(1, 2, 3, 4, 5);
Index
can be used for type-safe retrieval and updating of elements at specific indexes:
HCons<Integer, HCons<String, HCons<Character, HNil>>> hList = cons(1, cons("2", cons('3', nil())));
HCons<Integer, Tuple2<String, Character>> tuple = tuple(1, "2", '3');
Tuple5<Integer, String, Character, Double, Boolean> longerHList = tuple(1, "2", '3', 4.0d, false);
Index<Character, HCons<Integer, ? extends HCons<String, ? extends HCons<Character, ?>>>> characterIndex =
Index.<Character>index().<String>after().after();
characterIndex.get(hList); // '3'
characterIndex.get(tuple); // '3'
characterIndex.get(longerHList); // '3'
characterIndex.set('4', hList); // HList{ 1 :: "2" :: '4' }
Finally, all Tuple*
classes are instances of both Functor
and Bifunctor
:
Tuple2<Integer, String> mappedTuple2 = tuple(1, 2).biMap(x -> x + 1, Object::toString);
System.out.println(mappedTuple2._1()); // prints 2
System.out.println(mappedTuple2._2()); // prints "2"
Tuple3<String, Boolean, Integer> mappedTuple3 = tuple("foo", true, 1).biMap(x -> !x, x -> x + 1);
System.out.println(mappedTuple3._1()); // prints "foo"
System.out.println(mappedTuple3._2()); // prints false
System.out.println(mappedTuple3._3()); // prints 2
HMaps are type-safe heterogeneous maps, meaning they can store mappings to different value types in the same map; however, whereas HLists encode value types in their type signatures, HMaps rely on the keys to encode the value type that they point to.
TypeSafeKey<String> stringKey = TypeSafeKey.typeSafeKey();
TypeSafeKey<Integer> intKey = TypeSafeKey.typeSafeKey();
HMap hmap = HMap.hMap(stringKey, "string value",
intKey, 1);
Optional<String> stringValue = hmap.get(stringKey); // Optional["string value"]
Optional<Integer> intValue = hmap.get(intKey); // Optional[1]
Optional<Integer> anotherIntValue = hmap.get(anotherIntKey); // Optional.empty
CoProduct
s generalize unions of disparate types in a single consolidated type.
CoProduct3<String, Integer, Character> string = CoProduct3.a("string");
CoProduct3<String, Integer, Character> integer = CoProduct3.b(1);
CoProduct3<String, Integer, Character> character = CoProduct3.c('a');
Rather than supporting explicit value unwrapping, which would necessarily jeopardize type safety, CoProduct
s support a match
method that takes one function per possible value type and maps it to a final common result type:
CoProduct3<String, Integer, Character> string = CoProduct3.a("string");
CoProduct3<String, Integer, Character> integer = CoProduct3.b(1);
CoProduct3<String, Integer, Character> character = CoProduct3.c('a');
Integer result = string.<Integer>match(String::length, identity(), Character::charCount); // 6
Additionally, because a CoProduct2<A, B>
guarantees a subset of a CoProduct3<A, B, C>
, the diverge
method exists between CoProduct
types of single magnitude differences to make it easy to use a more convergent CoProduct
where a more divergent CoProduct
is expected:
CoProduct2<String, Integer> coProduct2 = CoProduct2.a("string");
CoProduct3<String, Integer, Character> coProduct3 = coProduct2.diverge(); // still just the coProduct2 value, adapted to the coProduct3 shape
There are CoProduct
specializations for type unions of up to 5 different types: CoProduct2
through CoProduct5
, respectively.
Either<L, R>
represents a specialized CoProduct2<L, R>
, which resolve to one of two possible values: a left value wrapping an L
, or a right value wrapping an R
(typically an exceptional value or a successful value, respectively).
As with CoProduct2
, rather than supporting explicit value unwrapping, Either
supports many useful comprehensions to help facilitate type-safe interactions:
Either<String, Integer> right = Either.right(1);
Either<String, Integer> left = Either.left("Head fell off");
Integer result = right.orElse(-1);
//-> 1
List<Integer> values = left.match(l -> Collections.emptyList(), Collections::singletonList);
//-> []
Check out the tests for more examples of ways to interact with Either
.
Lambda also ships with a first-class lens type, as well as a small library of useful general lenses:
Lens<List<String>, List<String>, Optional<String>, String> stringAt0 = ListLens.at(0);
List<String> strings = asList("foo", "bar", "baz");
view(stringAt0, strings); // Optional[foo]
set(stringAt0, "quux", strings); // [quux, bar, baz]
over(stringAt0, s -> s.map(String::toUpperCase).orElse(""), strings); // [FOO, bar, baz]
There are three functions that lambda provides that interface directly with lenses: view
, over
, and set
. As the name implies, view
and set
are used to retrieve values and store values, respectively, whereas over
is used to apply a function to the value a lens is focused on, alter it, and store it (you can think of set
as a specialization of over
using constantly
).
Lenses can be easily created. Consider the following Person
class:
public final class Person {
private final int age;
public Person(int age) {
this.age = age;
}
public int getAge() {
return age;
}
public Person setAge(int age) {
return new Person(age);
}
public Person setAge(LocalDate dob) {
return setAge((int) YEARS.between(dob, LocalDate.now()));
}
}
...and a lens for getting and setting age
as an int
:
Lens<Person, Person, Integer, Integer> ageLensWithInt = Lens.lens(Person::getAge, Person::setAge);
//or, when each pair of type arguments match...
Lens.Simple<Person, Integer> alsoAgeLensWithInt = Lens.simpleLens(Person::getAge, Person::setAge);
If we wanted a lens for the LocalDate
version of setAge
, we could use the same method references and only alter the type signature:
Lens<Person, Person, Integer, LocalDate> ageLensWithLocalDate = Lens.lens(Person::getAge, Person::setAge);
Compatible lenses can be trivially composed:
Lens<List<Integer>, List<Integer>, Optional<Integer>, Integer> at0 = ListLens.at(0);
Lens<Map<String, List<Integer>>, Map<String, List<Integer>>, List<Integer>, List<Integer>> atFoo = MapLens.atKey("foo", emptyList());
view(atFoo.andThen(at0), singletonMap("foo", asList(1, 2, 3))); // Optional[1]
Lens provides independent map
operations for each parameter, so incompatible lenses can also be composed:
Lens<List<Integer>, List<Integer>, Optional<Integer>, Integer> at0 = ListLens.at(0);
Lens<Map<String, List<Integer>>, Map<String, List<Integer>>, Optional<List<Integer>>, List<Integer>> atFoo = MapLens.atKey("foo");
Lens<Map<String, List<Integer>>, Map<String, List<Integer>>, Optional<Integer>, Integer> composed =
atFoo.mapA(optL -> optL.orElse(singletonList(-1)))
.andThen(at0);
view(composed, singletonMap("foo", emptyList())); // Optional.empty
Check out the tests or the javadoc for more info.
Wherever possible, lambda maintains interface compatibility with similar, familiar core Java types. Some examples of where this works well is with both Fn1
and Predicate
, which extend j.u.f.Function
and j.u.f.Predicate
, respectively. In these examples, they also override any implemented methods to return their lambda-specific counterparts (Fn1.compose
returning Fn1
instead of j.u.f.Function
as an example).
Unfortunately, due to Java's type hierarchy and inheritance inconsistencies, this is not always possible. One surprising example of this is how Fn1
extends j.u.f.Function
, but Fn2
does not extend j.u.f.BiFunction
. This is because j.u.f.BiFunction
itself does not extend j.u.f.Function
, but it does define methods that collide with j.u.f.Function
. For this reason, both Fn1
and Fn2
cannot extend their Java counterparts without sacrificing their own inheritance hierarchy. These types of asymmetries are, unfortunately, not uncommon; however, wherever these situations arise, measures are taken to attempt to ease the transition in and out of core Java types (in the case of Fn2
, a supplemental #toBiFunction
method is added). I do not take these inconveniences for granted, and I'm regularly looking for ways to minimize the negative impact of this as much as possible. Suggestions and use cases that highlight particular pain points here are particularly appreciated.
lambda is part of palatable, which is distributed under The MIT License.