Skip to content

GiorgiaAuroraAdorni/gansformer-reproducibility-challenge

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

gansformer-reproducibility-challenge

Project for Advance Topic in Machine Learning course @ USI 21/22.
See https://github.com/GiorgiaAuroraAdorni/gansformer-reproducibility-challenge, https://drive.google.com/drive/folders/1sqHD-X4mLOOkoT-xJvWGdPlwxb5et0kA?usp=sharing for datasets and https://drive.google.com/drive/folders/1ZFfO4HVINH-aDQbgLscJxNTqGLEIOMZv?usp=sharing for models.

Contributors

Giorgia Adornigiorgia.adorni@usi.ch GiorgiaAuroraAdorni

Felix Boelterfelix.boelter@usi.ch felixboelter

Stefano Carlo Lambertenghistefano.carlo.lambertenghi@usi.ch steflamb

Prerequisites

  • Python 3
  • Tensorflow 1.X

Installation

Clone our repository and install the requirements

$ git clone https://github.com/GiorgiaAuroraAdorni/gansformer-reproducibility-challenge
$ cd gansformer-reproducibility-challenge/src
$ pip install -r requirements.txt

Usage

For the usage, go to the colab notebooks directory:

  • Run Reproducibility_model_trainer.ipynb for training the models: Stylegan2, GANformers with Simplex and Duplex Attention and GANformers with Simplex and Duplex Attention (with vanilla StyleGAN2 discriminator).
  • Run Reproducibility_result_visualizer.ipynb for the visualisation phase: here you can select the model that you want to use and generate random images, perform a symple interpolation of the latent space or even perform style mixing starting from a chosen target image.