Project for Advance Topic in Machine Learning course @ USI 21/22.
See https://github.com/GiorgiaAuroraAdorni/gansformer-reproducibility-challenge, https://drive.google.com/drive/folders/1sqHD-X4mLOOkoT-xJvWGdPlwxb5et0kA?usp=sharing for datasets and https://drive.google.com/drive/folders/1ZFfO4HVINH-aDQbgLscJxNTqGLEIOMZv?usp=sharing for models.
Giorgia Adorni — giorgia.adorni@usi.ch GiorgiaAuroraAdorni
Felix Boelter — felix.boelter@usi.ch felixboelter
Stefano Carlo Lambertenghi — stefano.carlo.lambertenghi@usi.ch steflamb
- Python 3
- Tensorflow 1.X
Clone our repository and install the requirements
$ git clone https://github.com/GiorgiaAuroraAdorni/gansformer-reproducibility-challenge
$ cd gansformer-reproducibility-challenge/src
$ pip install -r requirements.txt
For the usage, go to the colab notebooks
directory:
- Run
Reproducibility_model_trainer.ipynb
for training the models: Stylegan2, GANformers with Simplex and Duplex Attention and GANformers with Simplex and Duplex Attention (with vanilla StyleGAN2 discriminator). - Run
Reproducibility_result_visualizer.ipynb
for the visualisation phase: here you can select the model that you want to use and generate random images, perform a symple interpolation of the latent space or even perform style mixing starting from a chosen target image.