Skip to content

HCL-TECH-SOFTWARE/hcl-workload-automation-chart

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

HCL Workload Automation

Introduction

To ensure a fast and responsive experience when using HCL Workload Automation, you can deploy HCL Workload Automation on a cloud infrastructure. A cloud deployment ensures access anytime anywhere and is a fast and efficient way to get up and running quickly. It also simplifies maintenance, lowers costs, provides rapid upscale and downscale, minimizes IT requirements and physical on-premises data storage.

As more and more organizations move their critical workloads to the cloud, there is an increasing demand for solutions and services that help them easily migrate and manage their cloud environment.

To respond to the growing request to make automation opportunities more accessible, HCL Workload Automation containers can be deployed into the following supported third-party cloud provider infrastructures:

  • Amazon EKS Amazon Web Services (AWS) Elastic Kubernetes Service (EKS)
  • Microsoft Azure Microsoft® Azure Kubernetes Service (AKS)
  • Google GKE Google Kubernetes Engine (GKE)
  • OpenShift OpenShift (OCP)

HCL Workload Automation is a complete, modern solution for batch and real-time workload management. It enables organizations to gain complete visibility and control over attended or unattended workloads. From a single point of control, it supports multiple platforms and provides advanced integration with enterprise applications including ERP, Business Analytics, File Transfer, Big Data, and Cloud applications.

The information in this README contains the steps for deploying the following HCL Workload Automation components using a chart and container images:

HCL Workload Automation, which comprises master domain manager and its backup, Dynamic Workload Console, and Dynamic Agent

For more information about HCL Workload Automation, see the product documentation library in HCL Workload Automation Documentation.

Details

By default, a single server (master domain manager), Dynamic Workload Console (console) and dynamic agent is installed.

To achieve high availability in an HCL Workload Automation environment, the minimum base configuration is composed of 2 Dynamic Workload Consoles and 2 servers (master domain managers). For more details about HCL Workload Automation and high availability, see:

An active-active high availability scenario.

HCL Workload Automation can be deployed across a single cluster, but you can add multiple instances of the product components by using a different namespace in the cluster. The product components can run in multiple failure zones in a single cluster.

In addition to the product components, the following objects are installed:

Agent Console Server (MDM)
Deployments
Pods wa-waagent-0 wa-waconsole-0 wa-waserver-0
Stateful Sets wa-waagent for dynamic agent wa-waconsole wa-waserver
Secrets wa-pwd-secret wa-pwd-secret
Certificates (Secret) wa-waagent wa-waserver wa-waserver
Network Policy da-network-policy dwc-network-policy mdm-network-policy
allow-mdm-to-mdm-network-policy
Services wa-waagent-h wa-waconsole wa-waconsole-h wa-waserver wa-waserver-h
PVC (generated from Helm chart). Default deployment includes a single (replicaCount=1) server, console, agent. Create a PVC for each instance of each component. 1 PVC data-wa-waagent-waagent0 1 PVC data-wa-waconsole-waconsole0 1 PVC data-wa-waserver-waserver0
PV (Generated by PVC) 1 PV 1 PV 1 PV
Service Accounts
Roles wa-pod-role wa-pod-role wa-pod-role
Role Bindings wa-pod-role-binding wa-pod-role-binding wa-pod-role-binding
Cluster Roles {{ .Release.Namespace }}-wa-pod-cluster-role-get-routes (name of clusterRole and, where {{ .Release.Namespace }} represents the name of the namespace <workload_automation_namespace>) {{ .Release.Namespace }}-wa-pod-cluster-role-get-routes {{ .Release.Namespace }}-wa-pod-cluster-role-get-routes
Cluster Role Bindings {{ .Release.Namespace }}-wa-pod-cluster-role-get-routes-binding (name of ClusterRoleBinding and, where {{ .Release.Namespace }} represents the name of the namespace \<workload_automation_namespace>) {{ .Release.Namespace }}-wa-pod-cluster-role-get-routes-binding {{ .Release.Namespace }}-wa-pod-cluster-role-get-routes-binding
Ingress or Load Balancer Depends on the type of network enablement that is configured. See Network enablement

Data encryption:

  • Data in transit encrypted using TLS 1.2
  • Data at rest encrypted using passive disk encryption.
  • Secrets are stored in an approved Kubernetes Secrets.
  • Logs are clear of all sensitive information.

Supported Platforms

  • Amazon EKS Amazon Elastic Kubernetes Service (EKS) on amd64: 64-bit Intel/AMD x86
  • Microsoft Azure Azure Kubernetes Service (AKS) on amd64: 64-bit Intel/AMD x86
  • Google GKE Google Kubernetes Engine (GKE) on amd64: 64-bit Intel/AMD x86
  • OpenShift OpenShift (OCP)

HCL Workload Automation supports all the platforms supported by the runtime provider of your choice.

Openshift support

You can deploy HCL Workload Automation on Openshift by following the instruction in this documentation and using helm charts. HCL Workload Automation 10.2.3 was formally tested by using Openshift 4.14 For Server and Console component ensure to modify the value of these parameters:

  • waserver.server.exposeServiceType
  • waconsole.console.exposeServiceType

From LoadBalancer to Routes

Accessing the container images

You can access the HCL Workload Automation chart and container images from the Entitled Registry. See Create the secret for more information about accessing the registry. The images are as follows:

  • hclcr.io/wa/hcl-workload-automation-agent-dynamic:10.2.3.00.20241122
  • hclcr.io/wa/hcl-workload-automation-server:10.2.3.00.20241122
  • hclcr.io/wa/hcl-workload-automation-console:10.2.3.00.20241122

Other supported tags

  • 10.2.2.00.20240424
  • 10.2.1.00.20231201
  • 10.2.0.00.20230728
  • 10.1.0.05.20240712
  • 10.1.0.04.20231201-amd64
  • 10.1.0.03.20230511-amd64
  • 10.1.0.02.20230301
  • 10.1.0.01.20221130
  • 10.1.0.00.20220722
  • 10.1.0.00.20220512
  • 10.1.0.00.20220304
  • 9.5.0.07.20240327
  • 9.5.0.06.20230324
  • 9.5.0.06.20221216
  • 9.5.0.06.20220617
  • 9.5.0.05.20211217

Prerequisites

Before you begin the deployment process, ensure your environment meets the following prerequisites:

  • Helm 3.12 or later
  • OpenSSL
  • Grafana and Prometheus for monitoring dashboard
  • Jetstack cert-manager
  • Ingress controller: to manage the ingress service, ensure an ingress controller is correctly configured. For example, to configure an NGINX ingress controller, ensure the following option is set if NGINX is installed using a Helm chart: "controller.extraArgs.enable-ssl-passthrough". Refer to the NGINX Ingress Controller documentation for more details.
  • Kubernetes version: >=1.29 or later (no specific APIs need to be enabled)
  • kubectl command-line tool to control Kubernetes clusters
  • API key for accessing HCL Entitled Registry: hcl.cr.io
  • Optionally, create a secret file to store passwords and use your custom certificates. For further information, see Creating a secrets file.

The following are prerequisites specific to each supported cloud provider:

Amazon EKS

  • Amazon Kubernetes Service (EKS) installed and running
  • AWS CLI (AWS command line)

Microsoft Azure

  • Azure Kubernetes Service (AKS) installed and running
  • azcli (Azure command line)

Google GKE

  • Google Kubernetes Engine (GKE) installed and running
  • gcloud SDK (Google command line)

Storage classes static PV and dynamic provisioning

Amazon EKS

Provider Disk Type PVC Size PVC Access Mode
AWS EBS GP2 SSD Default ReadWriteOnce
AWS EBS IO1 SSD Default ReadWriteOnce

For additional details about AWS storage settings, see Storage classes.

Microsoft Azure

Provider Disk Type PVC Size PVC Access Mode
Azure File SSD Default ReadWriteOnce
Azure Disk SSD Default ReadWriteOnce

Note: The volumeBindingMode must be set to WaitforFirstConsumer and not Immediate. For additional details about Microsoft Azure storage settings, see Azure Files - Dynamic.

Google GKE

Provider Disk Type PVC Size PVC Access Mode
GCP Standard Persistent Disks Default ReadWriteOnce
GCP Balanced Persistent Disks Default ReadWriteOnce
GCP SSD Persistent Disks Default ReadWriteOnce

For more details about the storage requirements for your persistent volume claims, see the Storage section of this README file.

OpenShift OpenShift (OCP)

Ensure your PVC Access Mode is ReadWriteOnce. For more information about supported storage types, see Storage overview | Storage | OpenShift Container Platform 4.14.

Resources Required

The following resources correspond to the default values required to manage a production environment. These numbers might vary depending on the environment.

Component Container resource limit Container memory request
Server CPU: 4, Memory: 16Gi CPU: 1, Memory: 4Gi, Storage: 10Gi
Console CPU: 4, Memory: 16Gi CPU: 1, Memory: 4Gi, Storage: 10Gi
Dynamic Agent CPU: 1, Memory: 2Gi CPU: 200m, Memory: 200Mi, Storage size: 2Gi

Installing

Installing and configuring HCL Workload Automation, involves the following high-level steps:

  1. Creating the Namespace.
  2. Creating a Kubernetes Secret by accessing the entitled registry to store an entitlement key for the HCL Workload Automation offering on your cluster.
  3. Securing communication using either Jetstack cert-manager or using your custom certificates.
  4. Creating a secrets file to store passwords for the console and server components, or if you use custom certificates, to add your custom certificates to the Certificates truststore.
  5. Loading third-party certificates
  6. (For Microsoft Azure AKS and Google GKE only) Configuring the Microsoft Azure SQL server database or Configuring the Google Cloud SQL for SQL Server database.
  7. Installing Automation Hub integrations.
  8. Installing custom integrations.
  9. Deploying the product components.
  10. Verifying the installation.

Creating the Namespace

To create the namespace, run the following command:

    kubectl create namespace <workload_automation_namespace>

Creating the Secret

If you already have a license then you can proceed to obtain your entitlement key. To learn more about acquiring an HCL Workload Automation license, contact HWAinfo@hcl.com.

Obtain your entitlement key and store it on your cluster by creating a Kubernetes Secret. Using a Kubernetes secret allows you to securely store the key on your cluster and access the registry to download the chart and product images.

  1. Access the entitled registry.

Contact your HCL sales representative for the login details required to access the HCL Entitled Registry.

  1. To create a pull secret for your entitlement key that enables access to the entitled registry, run the following command:

      kubectl create secret docker-registry -n <workload_automation_namespace> sa-<workload_automation_namespace> --docker-server=<registry_server> --docker-username=<user_name> --docker-password=<password>
    

    where,

    • <workload_automation_namespace> represents the namespace where the product components are installed
    • <registry_server> is hclcr.io
    • <user_name> is the user name provided by your HCL representative
    • <password> is the entitled key copied from the entitled registry <api_key>

Securing communication

You secure communication using certificates. You can manage certificates using either the Jetstack cert-manager or using your own custom certificates. For information about using your own certificates, see the section Configuring. For more information about Jetstack cert-manager, see the cert-manager documentation.

Cert-manager is a Kubernetes addon that automates the management and issuance of TLS certificates. It verifies periodically that certificates are valid and up-to-date, and takes care of renewing them before they expire.

  1. Create the namespace for cert-manager.

     kubectl create namespace cert-manager
    
  2. Install cert-manager using a Helm chart by running the following commands:

    a. helm repo add jetstack https://charts.jetstack.io

    b. helm install cert-manager jetstack/cert-manager --namespace cert-manager --set installCRDs=true

  3. Create the Certificate Authority (CA) by running the following commands:

    a. .\openssl.exe genrsa -out ca.key 2048

    b. .\openssl.exe req -x509 -new -nodes -key ca.key -subj "/CN=WA_ROOT_CA" -days 3650 -out ca.crt

  4. Create the CA key pair secret by running the following command:

    kubectl create secret tls ca-key-pair --cert=ca.crt --key=ca.key -n <workload_automation_namespace>
    
  5. Create the Issuer under the namespace. Edit the issuer.yaml file with the namespace and CA key pair.

    a. Create the issuer.yaml as follows, specifying the namespace and CA key pair:

     apiVersion: cert-manager.io/v1
     kind: Issuer
     metadata:
       labels:
         app.kubernetes.io/name: cert-manager
       name: wa-ca-issuer
       namespace: <workload_automation_namespace>
     spec:
       ca:
         secretName: ca-key-pair
    

    b. Run the following command to create the issuer under the namespace:

     kubectl apply -f issuer.yaml -n <workload_automation_namespace>
    

Creating a secrets file

Create a secrets file to store passwords for the server, console and database, or if you use custom certificates, to add your custom certificates to the certificates truststore.

Create secrets file to store passwords for the console and server components
  1. Manually create a mysecret.yaml file to store passwords. The mysecret.yaml file must contain the following parameters:

     apiVersion: v1
     kind: Secret
     metadata:
       name: wa-pwd-secret
       namespace: <workload_automation_namespace>
     type: Opaque
         data:
         WA_PASSWORD: <hidden_password>
         DB_ADMIN_PASSWORD: <hidden_password>
         DB_PASSWORD: <hidden_password>	
    

where:

  • wa-pwd-secret is the value of the pwdSecretName parameter defined in the Configuration Parameters section;
  • <workload_automation_namespace> is the namespace where you are going to deploy the HCL Workload Automation product components.
  • <hidden_password> must be entered; to enter an encrypted password, run the following command in a UNIX shell and copy the output into the yaml file: echo -n 'mypassword' | base64

Note: The echo command must be launched separately for each password that you want to enter as an encrypted password in the mysecret.yaml:

  • WA_PASSWORD: <hidden password>
  • DB_ADMIN_PASSWORD: <hidden password>
  • DB_PASSWORD: <hidden password>
  1. Once the file has been created and filled in, it must be imported.

    a. From the command line, log in to the cluster.

    b. Apply the WA-Secret (wa-pwd-secret). Create a secrets file to store passwords for both the server and console components. Launch the following command:

     kubectl apply -f <my_path>/mysecret.yaml -n <workload_automation_namespace>
    

where <my_path> is the location path of the mysecret.yaml file.

  1. You can optionally force the keystore password or use a non-randomic password. Starting from v 10.1 Fix Pack 3, if you do not create a secret, the SSL password for the keystores is generated randomly. If you want to create a secret, use the following syntax:

     apiVersion: v1
     kind: Secret
     metadata:
       name: <release_name>-ssl-secret
       namespace: <workload_automation_namespace>
     type: Opaque
     data:
        SSL_PASSWORD: <hidden_password>
    

Note Starting from v 10.2, if the passwords in the keystore secret and in the secret optionally created in step 3, do not match, keystores are removed and recreated from scratch using the password you defined. This mechanism allows you to rotate the keystore password when necessary.

Loading third-party certificates

To add third-party certificates to the truststore, create a secret with the syntax listed below. It is recommended you create a secret for each certificate. You need to provide a tls.key for certificates that require a tls.key together with a tls.crt.

        apiVersion: v1
	kind: Secret
	metadata:
	  name: <yourcert-server-crt>
	  namespace: <workload_automation_namespace>
	  labels:
	    wa-import: 'true'
	type: kubernetes.io/tls
	data:
	  tls.crt: <base64_encoded_certificate>
	  tls.key: ''

Enabling installation of dynamic agents on kubernetes with a remote gateway

To install a dynamic agent with remote gateway you must have a dynamic agent already installed with a local gateway. The newly added parameters in version 10.2 facilitates you to deploy a new dynamic agent and enables the communication directly with another agent gateway.

To enable the parameters for Kubernetes:

Add the following parameters under the environment section of the wa-agent kubernetes service:

Parameter Description
agent.dynamic.gateway.hostname The IP or the hostname of the agent deployed with local gateway.
agent.dynamic.gateway.port The import of the agent deployed with local gateway. Default import value 31114
agent.dynamic.gateway.jmFullyQualifiedHostname The hostname of the new dynamic agent to connect to the remote gateway.

To deploy a new agent in an existing environment with wa-server, wa-console, and wa-agent, specify the parameters as follows:

Parameter Replace with
agent.dynamic.gateway.hostname wa-agent (hostname of the agent with local gateway)
agent.dynamic.gateway.portT 31114 (default port of the agent with local gateway)
agent.dynamic.gateway.jmFullyQualifiedHostname wa-agent_1 (hostname of the agent where we need to deploy and connect to the remote gateway of wa_agent)

NOTE: To enable the communication and to update the status of the job, ensure that the parameter JobManagerGWURIs,JobManagerGWURIs, which is found in the JobManagerGW.ini file is correctly populated with the name of the service (for containers) of the agent with the local gateway (wa-agent in the above example) or the hostname of the VM where the agent has been installed. For containers, ensure to replace the JobManagerGWURIs value from JobManagerGWURIs=https://localhost:31114/ita/JobManagerGW/JobManagerRESTWeb/JobScheduler/resource to JobManagerGWURIs=https://:31114/ita/JobManagerGW/JobManagerRESTWeb/JobScheduler/resource

Configuring the Microsoft Azure SQL server database

Microsoft Azure

Running the HCL Workload Automation product containers within Azure AKS gives you access to services such as a highly scalable cloud database service. You can deploy and run any of the following Azure SQL Server database models in the Azure cloud, depending on your needs:

  • SQL server database
  • SQL managed instance
  • SQL virtual machine

To use the database with both the server and console components, set the type parameter to type= MSSQL in the values.yaml file, and then configure the database settings in the same file according to the chosen database model as follows:

SQL database server and SQL managed instance:

Server Console
sslConnection: false sslConnection: false
tsLogName: PRIMARY tsName: PRIMARY
tsLogPath: null
tsName: PRIMARY
tsPath: null tsPath: null
tsPlanName: PRIMARY
tsPlanPath: null
tsTempName: null tsTempName: null
tssbspace: null tssbspace: null
type: MSSQL type: MSSQL
usepartitioning: true usepartitioning: true
user: <db_user> user: <db_user>

For the SQL managed instance database model, ensure that the hostname is the IP address or hostname used to connect to the Azure database for MSSQL.

SQL virtual machine:

Server Console
sslConnection: false sslConnection: false
tsLogName: TWS_LOG tsName: TWS_DATA_DWC
tsLogPath: /var/opt/mssql/data
tsName: TWS_DATA
tsPath: /var/opt/mssql/data tsPath: /var/opt/mssql/dat
tsPlanName: TWS_PLAN
tsPlanPath: /var/opt/mssql/data
tsTempName: null tsTempName: null
tssbspace: null tssbspace: null
type: MSSQL type: MSSQL
usepartitioning: true usepartitioning: true
user: <db_user> user: >db_user>

Configuring the Google Cloud SQL for SQL Server database

Google GKE

Running the HCL Workload Automation product containers within Google GKE gives you access to services such as a secure and compliant cloud database service. You can deploy and run the following Google Cloud SQL for SQL Server database model in the Google GPC cloud:

  • Google Cloud SQL for SQL Server

To use the database with both the server and console components, set the type parameter to type= MSSQL in the values.yaml file, and then configure the database settings in the same file as follows:

SQL database server and SQL managed instance:

Server Console
sslConnection: false sslConnection: false
tsLogName: PRIMARY tsName: PRIMARY
tsLogPath: null
tsName: PRIMARY
tsPath: null tsPath: null
tsPlanName: PRIMARY
tsPlanPath: null
tsTempName: null tsTempName: null
tssbspace: null tssbspace: null
type: MSSQL type: MSSQL
usepartitioning: true usepartitioning: true
user: <db_user> user: <db_user>

Installing Automation Hub integrations

You can extend Workload Automation with a number of out-of-the-box integrations, or plug-ins. Complete documentation for the integrations is available on Automation Hub. Use this procedure to integrate only the integrations you need to automate your business workflows.

Note: You must perform this procedure before deploying the server and console components. Any changes made post-installation are applied the next time you perform an upgrade.

The following procedure describes how you can create and customize a configMap file to identify the integrations you want to make available in your Workload Automation environment:

  1. Create a .yaml file, for example, plugins-config.yaml, with the following content. This file name will need to be specified in a subsequent step.

     ####################################################################
     # Licensed Materials Property of HCL*
     # (c) Copyright HCL Technologies Ltd. 2024. All rights reserved.
     #
     # * Trademark of HCL Technologies Limited
     ####################################################################
    
     apiVersion: v1
     kind: ConfigMap
     metadata:
       name: <configmap_name>
     data:
       plugins.properties: |
           com.hcl.scheduling.agent.kubernetes
           com.hcl.scheduling.agent.udeploycode
           com.hcl.wa.plugin.ansible
           com.hcl.wa.plugin.automationanywherebotrunner
           com.hcl.wa.plugin.automationanywherebottrader
           com.hcl.wa.plugin.awscloudformation
           com.hcl.wa.plugin.awslambda
           com.hcl.wa.plugin.awssns
           com.hcl.wa.plugin.awssqs
           com.hcl.wa.plugin.azureresourcemanager
           com.hcl.wa.plugin.blueprism
           com.hcl.wa.plugin.compression
           com.hcl.wa.plugin.encryption
           com.hcl.wa.plugin.gcpcloudstorage
           com.hcl.wa.plugin.gcpdeploymentmanager
           com.hcl.wa.plugin.jdedwards
           com.hcl.wa.plugin.obiagent
           com.hcl.wa.plugin.odiloadplan
           com.hcl.wa.plugin.oraclehcmdataloader
           com.hcl.wa.plugin.oracleucm
           com.hcl.wa.plugin.saphanaxsengine
           com.hcl.waPlugin.chefbootstrap
           com.hcl.waPlugin.chefrunlist
           com.hcl.waPlugin.obirunreport
           com.hcl.waPlugin.odiscenario
           com.ibm.scheduling.agent.apachespark
           com.ibm.scheduling.agent.aws
           com.ibm.scheduling.agent.azure
           com.ibm.scheduling.agent.biginsights
           com.ibm.scheduling.agent.centralizedagentupdate
           com.ibm.scheduling.agent.cloudant
           com.ibm.scheduling.agent.cognos
           com.ibm.scheduling.agent.database
           com.ibm.scheduling.agent.datastage
           com.ibm.scheduling.agent.ejb
           com.ibm.scheduling.agent.filetransfer
           com.ibm.scheduling.agent.hadoopfs
           com.ibm.scheduling.agent.hadoopmapreduce
           com.ibm.scheduling.agent.j2ee
           com.ibm.scheduling.agent.java
           com.ibm.scheduling.agent.jobdurationpredictor
           com.ibm.scheduling.agent.jobmanagement
           com.ibm.scheduling.agent.jobstreamsubmission
           com.ibm.scheduling.agent.jsr352javabatch
           com.ibm.scheduling.agent.mqlight
           com.ibm.scheduling.agent.mqtt
           com.ibm.scheduling.agent.mssqljob
           com.ibm.scheduling.agent.oozie
           com.ibm.scheduling.agent.openwhisk
           com.ibm.scheduling.agent.oracleebusiness
           com.ibm.scheduling.agent.pichannel
           com.ibm.scheduling.agent.powercenter
           com.ibm.scheduling.agent.restful
           com.ibm.scheduling.agent.salesforce
           com.ibm.scheduling.agent.sapbusinessobjects
           com.ibm.scheduling.agent.saphanalifecycle
           com.ibm.scheduling.agent.softlayer
           com.ibm.scheduling.agent.sterling
           com.ibm.scheduling.agent.variabletable
           com.ibm.scheduling.agent.webspheremq
           com.ibm.scheduling.agent.ws
    
  2. In the plugins-config.yaml file, assign a name of your choice to the configmap:

     name: <configmap_name>
    
  3. Assign this same name to the Global.pluginImageName parameter in the values.yaml file. See Global parameters for more information about this global parameter.

  4. Delete the lines related to the integrations you do not want to make available in your environment. The remaining integrations will be integrated into Workload Automation at deployment time. Save your changes to the file.

    You can always refer back to this readme file and add an integration back into the file in the future. The integration becomes available the next time you update the console and server containers.

  5. To apply the configMap to your environment and integrate the plug-ins, run the following command:

     kubectl apply -f plugins_config.yaml -n <workload_automation_namespace>
    

Proceed to deploy the product components. After the deployment, you can include jobs related to these integrations when defining your workload.

AIDA configuration

To configure AIDA, please see the following readme: AIDA

Installing custom integrations

In addition to the integrations available on Automation Hub, you can extend Workload Automation with custom plug-ins that you create. For information about creating a custom plug-in, see Workload Automation Lutist Development Kit on Automation Hub.

To install a custom plug-in and make it available to be used in your workload, perform the following steps before deploying or upgrading the console and server components:

  1. Create a new folder with a name of your choosing, for example, "my_custom_plugins".

  2. Create a Dockerfile with the following content and save it to the new folder as is, "my_custom_plugins". This file does not require any customization.

     FROM registry.access.redhat.com/ubi8:8.3
    
     ENV WA_BASE_UID=999
     ENV WA_BASE_GID=0
     ENV WA_USER=wauser
     ENV WA_USER_HOME=/home/${WA_USER}
    
     USER 0
    
     RUN echo "Creating \"${WA_USER}\" user for Workload Automation and assign it to group \"${WA_BASE_GID}\"" \
     && userdel systemd-coredump \
     && if  [ ${WA_BASE_GID} -ne 0 ];then \
     groupadd -g ${WA_BASE_GID} -r ${WA_USER};fi \
     && /usr/sbin/useradd -u ${WA_BASE_UID} -m -d ${WA_USER_HOME} -r -g ${WA_BASE_GID} ${WA_USER}
    
     RUN mkdir -p /opt/wa_plugins /opt/wautils /tmp/custom_plugins
     COPY plugins/* /opt/wa_plugins/
    
     RUN chown -R ${WA_BASE_UID}:0 /opt/wa_plugins \
     && chmod -R 755 /opt/wa_plugins
    
     COPY copy_custom_plugins.sh /opt/wautils/copy_custom_plugins.sh
    
     RUN chmod 755 /opt/wautils/copy_custom_plugins.sh \
     && chown ${WA_BASE_UID}:${WA_BASE_GID} /opt/wautils/copy_custom_plugins.sh
    
     USER ${WA_BASE_UID}
    
     CMD [ "/opt/wautils/copy_custom_plugins.sh" ] 
    
  3. Create another file specifically with the name: copy_custom_plugins.sh. The file must contain the following content, and it must be saved to the new folder, "my_custom_plugins":

     #!/bin/sh
     ####################################################################
     # Licensed Materials Property of HCL*
     # (c) Copyright HCL Technologies Ltd. 2024. All rights reserved.
     #
     # * Trademark of HCL Technologies Limited
     ####################################################################
    
    
     copyCustomPlugins(){
         SOURCE_PLUGINS_DIR=$1
         REMOTE_PLUGINS_DIR=$2
    
    
         echo "I: Starting copy of custom plugins...." 
         if [ -d "${SOURCE_PLUGINS_DIR}" ] && [ -d "${REMOTE_PLUGINS_DIR}" ];then
     	echo "I: Copying custom plugins...." 
     	cp --verbose -R ${SOURCE_PLUGINS_DIR} ${REMOTE_PLUGINS_DIR}
         fi
     }
    
     ###############
     #MAIN
     ###############
    
     copyCustomPlugins $1 $2
    
  4. Create a sub-folder specifically named: "plugins", in the new folder "my_custom_plugins".

  5. Copy your custom .jar plug-ins to the "plugins" sub-folder.

  6. Run the following command to build the Docker image:

     docker build -t <your_docker_registry_name>/<your_image_name>:<your_tag> .
    

    where <your_docker_registry_name> is the name of your docker registry, <your_image_name> is the name of your Docker image, and <your_tag> is the tag you assigned to your Docker image.

  7. Run the following command to push the Docker image to the registry:

     docker push <your_docker_registry_name>/<your_image_name>:<your_tag>
    
  8. Configure the customPluginImageName parameter in the values.yaml file with the name of the image and tag built in the previous steps. See Global parameters for more information about this parameter.

     customPluginImageName: <your_docker_registry_name>/<your_image_name>:<your_tag>
    

Proceed to deploy the product components. After the deployment, you can include jobs related to your custom plug-ins when defining your workload.

Deploying the product components

To deploy the HCL Workload Automation components, ensure you have first downloaded the chart from the HCL Entitled Registry: hclcr.io and have unpacked it to a local directory. If you already have the chart then update it.

  1. Download the chart from the repository and unpack it to a local directory or, if you already have the chart, update it.

    First time installation and configuration of the chart:

    a. Add the repository:

     helm repo add <repo_name> https://hclcr.io/chartrepo/wa --username <username> --password <api_key>, where <repo_name> represents the name of the chosen local repository
    

    b. Update the Helm chart:

     helm repo update 
    

    c. Pull the Helm chart:

     helm pull <repo_name>/hcl-workload-automation-prod
    

Note: If you want to download a specific version of the chart use the --version option in the helm pull command.

Update your chart:

    helm repo update 	 
  1. Customize the deployment. Configure each product component by adjusting the values in the values.yaml file. See these parameters and their default values in Configuration Parameters. By default, a single server, console, and agent is installed.

Note: If you specify the waconsole.engineHostName and waconsole.enginePort parameters in the values.yaml file, only a single engine connection related to an engine external to the cluster is automatically defined in the Dynamic Workload Console using the values assigned to these parameters. By default, the values for these parameters are blank, and the server is deployed within the cluster and the engine connection is related to the server in the cluster. If, instead, you deploy both a server within the cluster and one external to the cluster, a single engine connection is automatically created in the console using the values of the parameters related to the external engine (server). If you require an engine connection to the server deployed within the cluster, you must define the connection manually.

  1. Deploy the instance by running the following command:

     helm install -f values.yaml <workload_automation_release_name> <repo_name>/hcl-workload-automation-prod -n <workload_automation_namespace>
    

where, <workload_automation_release_name> is the deployment name of the instance. TIP: Because this name is used in the server component name and the pod names, use a short name or acronym when specifying this value to ensure it is readable.

The following are some useful Helm commands:

  • To list all of the Repo releases:

      helm list -A
    
  • To update the Helm release:

      helm upgrade <workload_automation_release_name> <repo_name>/hcl-workload-automation-prod -f values.yaml -n <workload_automation_namespace>
    
  • To delete the Helm release:

      helm uninstall <workload_automation_release_name> -n <workload_automation_namespace>
    

Verifying the installation

After the deployment procedure is complete, you can validate the deployment to ensure that everything is working.

To manually verify that the installation was successfully installed, you can perform the following checks:

  1. Run the following command to verify the pods installed in the <workload_automation_namespace>:

        kubectl get pods -n <workload_automation_namespace>
    
  2. Locate the master pod name that is in the format <workload_automation_release_name>-waserver-0.

  3. To access the master pod, open a bash shell and run the following command:

     kubectl exec -ti <workload_automation_release_name>-waserver-0 -n <workload_automation_namespace> -- /bin/bash
    
  4. Access the HCL Workload Automation pod and run the following commands:

    a. Composer list workstation: lists the workstation definitions in the database

     composer li cpu=/@/@
    

    b. Conman Showpus: lists all workstations in the plan

     conman sc /@/@
    

    c. Global option command optman ls:

     optman ls
    

This command lists the current values of all HCL Workload Automation global options. For more information about the global options see Global Options - detailed description.

  • Verify that the default engine connection is created from the Dynamic Workload Console

Verifying the default engine connection depends on the network enablement configuration you implement. To determine the URL to be used to connect to the console, follow the procedure for the appropriate network enablement configuration.

For load balancer:

  1. Run the following command to obtain the token to be inserted in https://<loadbalancer>:9443/console to connect to the console:

Amazon EKS

    kubectl get svc <workload_automation_release_name>-waconsole-lb  -o 'jsonpath={..status.loadBalancer.ingress..hostname}' -n <workload_automation_namespace>

Microsoft Azure

   kubectl get svc <workload_automation_release_name>-waconsole-lb  -o 'jsonpath={..status.loadBalancer.ingress..ipaddress}' -n <workload_automation_namespace>

Google GKE

   kubectl get svc <workload_automation_release_name>-waconsole-lb  -o 'jsonpath={..status.loadBalancer.ingress..ipaddress}' -n <workload_automation_namespace>
  1. With the output obtained, replace <loadbalancer> in the URL https://<loadbalancer>:9443/console.

For ingress:

  1. Run the following command to obtain the token to be inserted in https://<ingress>/console to connect to the console:

     kubectl get ingress/<workload_automation_release_name>-waconsole -o 'jsonpath={..host}'-n <workload_automation_namespace>
    
  2. With the output obtained, replace <ingress> in the URL https://<ingress>/console.

Logging into the console:

  1. Log in to the console by using the URLs obtained in the previous step.

  2. For the credentials, specify the user name (wauser) and password (wa-pwd-secret, the password specified when you created the secrets file to store passwords for the server, console and database).

  3. From the navigation toolbar, select Administration -> Manage Engines.

  4. Verify that the default engine, engine_wa-waserver is dsplayed in the Manage Engines list.

To ensure the Dynamic Workload Console logout page redirects to the login page, modify the value of the logout url entry available in file authentication_config.xml:

   <jndiEntry value="${logout.url}" jndiName="logout.url" />

where the logout.url string in jndiName should be replaced with the logout URL of the provider.

Upgrading the Chart

Before you upgrade a chart, verify if there are jobs currently running and manually stop the related processes or wait until the jobs complete. To upgrade the release <workload_automation_release_name> to a new version of the chart, run the following command from the directory where the values.yaml file is located:

helm upgrade release_name <repo_name>/hcl-workload-automation-prod -f values.yaml -n <workload_automation_namespace>

If you have configured a configMaps file as described in Installing Automation Hub integrations, this upgrade procedure automatically upgrades any integrations or plug-ins previously installed from Automation Hub.

Rolling Back the Chart

Before you roll back a chart, verify if there are jobs currently running and manually stop the related processes or wait until the jobs complete. To roll back the <workload_automation_release_name> release to a previous version of the chart, run the following commands:

  1. Identify the revision number to which you want to roll back by running the command:

    helm history <workload_automation_release_name> -n <workload_automation_namespace>
    
  2. Roll back to the specified revision number:

    helm rollback <workload_automation_release_name>  <revision-number> -n <workload_automation_namespace>
    

Uninstalling the Chart

To uninstall the deployed components associated with the chart and clean up the orphaned Persistent Volumes, run:

  1. Uninstall the hcl-workload-automation-prod deployment, run:

    helm uninstall release_name -n <workload_automation_namespace> 
    

    The command removes all of the Kubernetes components associated with the chart and uninstalls the <workload_automation_release_name> release.

  2. Clean up orphaned Persistent Volumes by running the following command:

    kubectl delete pvc -l <workload_automation_release_name> -n <workload_automation_namespace> 
    

Configuration Parameters

The following tables list the configurable parameters of the chart, values.yaml, an example of the values and the default values. The tables are organized as follows:

 

  • Global parameters

The following table lists the global configurable parameters of the chart relative to all product components and an example of their values:

Parameter Description Mandatory Example Default
global.license Use ACCEPT to agree to the license agreement yes not accepted not accepted
global.enableServer If enabled, the Server application is deployed no true true
global.enableConsole If enabled, the Console application is deployed no true true
global.enableAgent If enabled, the Agent application is deployed no true true
global.serviceAccountName The name of the serviceAccount to use. The HCL Workload Automation default service account (wauser) and not the default cluster account no default ** wauser**
global.language The language of the container internal system. The supported language are: en (English), de (German), es (Spanish), fr (French), it (Italian), ja (Japanese), ko (Korean), pt_BR (Portuguese (BR)), ru (Russian), zh_CN (Simplified Chinese) and zh_TW (Traditional Chinese) yes en en
global.customLabels This parameter contains two fields: name and value. Insert customizable labels to group resources linked together. no name: environment value: prod name: environment value: prod
global.enablePrometheus Use to enable (true) or disable (false) Prometheus metrics no true true
global.pluginImageName The container plugin image name true
global.customPlugins If specified, the plug-ins and integrations listed in the configMap file are automatically installed when deploying the server and console containers. See Installing Automation Hub integrations for details about the procedure. no mycustomplugin (the value specified must match the value specified in the configMap file)
global.customPluginsImageName To install a custom plug-in when deploying the server and console containers, specify the name of the Docker registry, the plug-in image, and the tag assigned to the Docker image. See Installing custom integrations for details about the procedure. no myregistry/mypluginimage:my_tag
  • Agent parameters

The following table lists the configurable parameters of the chart relative to the agent and an example of their values:

Parameter Description Mandatory Example Default
waagent.enableJWT Authentication using JSON Web Token (JWT) no false true
waagent.fsGroupId The secondary group ID of the user no 999
waagent.supplementalGroupId Supplemental group id of the user no
waagent.replicaCount Number of replicas to deploy yes 1 1
waagent.image.repository HCL Workload Automation Agent image repository yes @DOCKER.AGENT.IMAGE.NAME@ @DOCKER.AGENT.IMAGE.NAME@
waagent.image.tag HCL Workload Automation Agent image tag yes @VERSION@ @VERSION@
waagent.image.pullPolicy image pull policy yes Always Always
waagent.licenseType Product license type (IBM Workload Scheduler only) yes PVU PVU
waagent.agent.name Agent display name yes WA_AGT WA_AGT
waagent.agent.tz If used, it sets the TZ operating system environment variable no America/Chicago
waagent.agent.networkpolicyEgress Customize egress policy. Controls network traffic and how a component pod is allowed to communicate with other pods. If empty, no egress policy is defined no See Network enablement
waagent.agent.nodeAffinityRequired A set of rules that determines on which nodes an agent can be deployed using custom labels on nodes and label selectors specified in pods. no See Network enablement
waagent.agent.dynamic.server.mdmhostname Hostname or IP address of the master domain manager no (mandatory if a server is not present inside the same namespace) wamdm.demo.com
waagent.agent.dynamic.server.port The HTTPS port that the dynamic agent must use to connect to the master domain manager no 31116 31116
waagent.agent.dynamic.pools* The static pools of which the Agent should be a member no Pool1, Pool2
waagent.agent.dynamic.useCustomizedCert If true, customized SSL certificates are used to connect to the master domain manager no false false
waagent.agent.dynamic.certSecretName The name of the secret to store customized SSL certificates no waagent-cert-secret
waagent.agent.containerDebug The container is executed in debug mode no no no
waagent.agent.livenessProbe.initialDelaySeconds The number of seconds after which the liveness probe starts checking if the server is running yes 60 60
waagent.resources.requests.cpu The minimum CPU requested to run yes 200m 200m
waagent.resources.requests.memory The minimum memory requested to run yes 200Mi 200Mi
waagent.resources.limits.cpu The maximum CPU requested to run yes 1 1
waagent.resources.limits.memory The maximum memory requested to run yes 2Gi 2Gi
waagent.persistence.enabled If true, persistent volumes for the pods are used no true true
waagent.persistence.useDynamicProvisioning If true, StorageClasses are used to dynamically create persistent volumes for the pods no true true
waagent.persistence.dataPVC.name The prefix for the Persistent Volumes Claim name no data data
waagent.persistence.dataPVC.storageClassName The name of the Storage Class to be used. Leave empty to not use a storage class no nfs-dynamic
waagent.persistence.dataPVC.selector.label Volume label to bind (only limited to single label) no my-volume-label
waagent.persistence.dataPVC.selector.value Volume label value to bind (only limited to single value) no my-volume-value
waagent.persistence.dataPVC.size The minimum size of the Persistent Volume no 2Gi 2Gi
waserver.persistence.extraVolumes A list of additional extra volumes no custom-volume-1
waserver.persistence.extraVolumeMounts A list of additional extra volumes mounts no custom-volume-1

(*) Note: for details about static agent workstation pools, see: Workstation.

  • Dynamic Workload Console parameters

The following table lists the configurable parameters of the chart relative to the console and an example of their values:

Parameter Description Mandatory Example Default
waconsole.fsGroupId The secondary group ID of the user no 999
waconsole.supplementalGroupId Supplemental group id of the user no
waconsole.replicaCount Number of replicas to deploy yes 1 1
waconsole.image.repository HCL Workload Automation Console image repository yes @DOCKER.CONSOLE.IMAGE.NAME@
waconsole.image.tag HCL Workload Automation Console image tag yes @VERSION@
waconsole.image.pullPolicy Image pull policy yes Always Always
waconsole.console.containerDebug The container is executed in debug mode no no no
waconsole.console.db.type The preferred remote database server type (e.g. DERBY, DB2, ORACLE, MSSQL, IDS). Use Derby database only for demo or test purposes. yes DB2 DB2
waconsole.console.db.hostname The Hostname or the IP Address of the database server yes <dbhostname>
waconsole.console.db.port The port of the database server yes 50000 50000
waconsole.console.db.name Depending on the database type, the name is different; enter the name of the Server's database for DB2/Informix/OneDB/MSSQL, enter the Oracle Service Name for Oracle yes TWS TWS
waconsole.console.db.server The name of the Informix or OneDB database server yes only for IDS or ONEDB IDS
waconsole.console.db.tsName The name of the DATA table space no TWS_DATA
waconsole.console.db.tsPath The path of the DATA table space no TWS_DATA
waconsole.console.db.tsTempName The name of the TEMP table space (Valid only for Oracle) no TEMP leave it blank
waconsole.console.db.tssbspace The name of the SB table space (Valid only for IDS). no twssbspace twssbspace
waconsole.console.db.user The database user who accesses the Console tables on the database server. In case of Oracle, it identifies also the database. It can be specified in a secret too yes db2inst1
waconsole.console.db.adminUser The database user administrator who accesses the Console tables on the database server. It can be specified in a secret too yes db2inst1
waconsole.console.db.sslConnection If true, SSL is used to connect to the database (Valid only for DB2) no false false
waconsole.console.db.usepartitioning Enable the Oracle Partitioning feature. Valid only for Oracle. Ignored for other databases no true true
waconsole.engineHostName By default, the value of this parameter is set to blank. Specify this parameter together with the waconsole.enginePort parameter so that an engine connection is automatically defined using the specified host name and port number after deployment of the console. no 01.102.104.104 blank
waconsole.enginePort By default, the value of this parameter is set to blank. Specify this parameter together with the waconsole.engineHostName parameter so that an engine connection is automatically defined using the specified host name and port number after deployment of the console. no 31116 blank
waconsole.console.pwdSecretName The name of the secret to store all passwords yes wa-pwd-secret wa-pwd-secret
waconsole.console.livenessProbe.initialDelaySeconds The number of seconds after which the liveness probe starts checking if the server is running yes 100 100
waconsole.console.useCustomizedCert If true, customized SSL certificates are used to connect to the Dynamic Workload Console no false false
waconsole.console.tz If used, it sets the TZ operating system environment variable no America/Chicago
waconsole.console.certSecretName The name of the secret to store customized SSL certificates no waconsole-cert-secret
waconsole.console.libConfigName The name of the ConfigMap to store all custom liberty configuration no libertyConfigMap
waconsole.console.routes.enabled If true, the ingress controller rules is enabled no true true
waconsole.resources.requests.cpu The minimum CPU requested to run yes 1 1
waconsole.resources.requests.memory The minimum memory requested to run yes 4Gi 4Gi
waconsole.resources.limits.cpu The maximum CUP requested to run yes 4 4
waconsole.resources.limits.memory The maximum memory requested to run yes 16Gi 16Gi
waconsole.persistence.enabled If true, persistent volumes for the pods are used no true true
waconsole.persistence.useDynamicProvisioning If true, StorageClasses are used to dynamically create persistent volumes for the pods no true true
waconsole.persistence.dataPVC.name The prefix for the Persistent Volumes Claim name no data data
waconsole.persistence.dataPVC.storageClassName The name of the StorageClass to be used. Leave empty to not use a storage class no nfs-dynamic
waconsole.persistence.dataPVC.selector.label Volume label to bind (only limited to single label) no my-volume-label
waconsole.persistence.dataPVC.selector.value Volume label value to bind (only limited to single label) no my-volume-value
waconsole.persistence.dataPVC.size The minimum size of the Persistent Volume no 5Gi 5Gi
waserver.persistence.extraVolumes A list of additional extra volumes no custom-volume-1
waserver.persistence.extraVolumeMounts A list of additional extra volumes mounts no custom-volume-1
waconsole.console.exposeServiceType The network enablement configuration implemented. Valid values: LOAD BALANCER or INGRESS yes INGRESS
waconsole.console.exposeServiceAnnotation Annotations of either the resource of the service or the resource of the ingress, customized in accordance with the cloud provider yes
waconsole.console.networkpolicyEgress Customize egress policy. Controls network traffic and how a component pod is allowed to communicate with other pods. If empty, no egress policy is defined no See Network enablement
waconsole.console.ingressHostName The virtual hostname defined in the DNS used to reach the Console. yes, only if the network enablement implementation is INGRESS
waconsole.console.ingressSecretName The name of the secret to store certificates used by ingress. If not used, leave it empty. yes, only if the network enablement implementation is INGRESS. wa-console-ingress-secret
waconsole.console.nodeAffinityRequired A set of rules that determines on which nodes a console can be deployed using custom labels on nodes and label selectors specified in pods. no See Network enablement
waconsole.console.otel_traces_exporter Trace exporter to be used no otlp
waconsole.console.otel_exporter_otlp_endpoint A base endpoint URL for any signal type, with an optionally-specified port number. Helpful for when you’re sending more than one signal to the same endpoint and want one environment variable to control the endpoint. no http://localhost:4317
waconsole.console.otel_exporter_otlp_traces_endpoint Endpoint URL for trace data only, with an optionally-specified port number. Typically ends with v1/traces when using OTLP/HTTP. no http://localhost:4317
waconsole.console.otel_exporter_otlp_protocol Specifies the OTLP transport protocol to be used for all telemetry data. no grpc
waconsole.console.otel_exporter_otlp_traces_protocol Specifies the OTLP transport protocol to be used for trace data. no grpc
  • Server parameters

The following table lists the configurable parameters of the chart and an example of their values:

Parameter Description Mandatory Example Default
waserver.replicaCount Number of replicas to deploy yes 1 1
waserver.image.repository HCL Workload Automation server image repository yes <repository_url> The name of the image server repository
waserver.image.tag HCL Workload Automation server image tag yes 1.0.0 the server image tag
waserver.image.pullPolicy Image pull policy yes Always Always
waserver.licenseType Product license type (IBM Workload Scheduler only) yes PVU PVU
waserver.fsGroupId The secondary group ID of the user no 999
waserver.server.company The name of your Company no my-company my-company
waserver.server.agentName The name to be assigned to the dynamic agent of the Server no WA_SAGT WA_AGT
waserver.server.dateFormat The date format defined in the plan no MM/DD/YYYY MM/DD/YYYY
waserver.server.ingress.enableSSLPassthrough Enable or disable ssl-passthrough configuration on the ingress resource of the Server component true false false
waserver.server.timezone The timezone used in the create plan command no America/Chicago
waserver.server.startOfDay The start time of the plan processing day in 24 hour format: hhmm no 0000 0700
waserver.server.tz If used, it sets the TZ operating system environment variable no America/Chicago
waserver.server.createPlan If true, an automatic JnextPlan is executed at the same time of the container deployment no no no
waserver.server.containerDebug The container is executed in debug mode no no no
waserver.enableSingleInstanceNetwork If true an additional load balancer for each server pod is created. This is used to establish a connection between on-premises master domain manager and cloud backup domain manager when porting your workload to the cloud. no false false
waserver.server.db.type The preferred remote database server type (e.g. DERBY, DB2, ORACLE, MSSQL, IDS) yes DB2 DB2
waserver.server.db.hostname The Hostname or the IP Address of the database server yes <dbhostname>
waserver.server.db.port The port of the database server yes 50000 50000
waserver.server.db.server The name of the Informix or OneDB database server yes only for IDS or ONEDB IDS
waserver.server.db.name Depending on the database type, the name is different; enter the name of the Server's database for DB2/Informix/OneDB/MSSQL, enter the Oracle Service Name for Oracle yes TWS TWS
waserver.server.db.tsName The name of the DATA table space no TWS_DATA
waserver.server.db.tsPath The path of the DATA table space no TWS_DATA
waserver.server.db.tsLogName The name of the LOG table space no TWS_LOG
waserver.server.db.tsLogPath The path of the LOG table space no TWS_LOG
waserver.server.db.tsPlanName The name of the PLAN table space no TWS_PLAN
waserver.server.db.tsPlanPath The path of the PLAN table space no TWS_PLAN
waserver.server.db.tsTempName The name of the TEMP table space (Valid only for Oracle) no TEMP leave it empty
waserver.server.db.tssbspace The name of the SB table space (Valid only for IDS) no twssbspace twssbspace
waserver.server.db.usepartitioning If true, the Oracle Partitioning feature is enabled. Valid only for Oracle, it is ignored by other databases. The default value is true no true true
waserver.server.db.user The database user who accesses the Server tables on the database server. In case of Oracle, it identifies also the database. It can be specified in a secret too yes db2inst1
waserver.server.db.adminUser The database user administrator who accesses the Server tables on the database server. It can be specified in a secret too yes db2inst1
waserver.server.db.sslConnection If true, SSL is used to connect to the database (Valid only for DB2) no false false
waserver.server.pwdSecretName The name of the secret to store all passwords yes wa-pwd-secret wa-pwd-secret
waserver.livenessProbe.initialDelaySeconds The number of seconds after which the liveness probe starts checking if the server is running yes 600 850
waserver.readinessProbe.initialDelaySeconds The number of seconds before the prob starts checking the readiness of the server yes 600 530
waserver.server.useCustomizedCert If true, customized SSL certificates are used to connect to the master domain manager no false false
waserver.server.certSecretName The name of the secret to store customized SSL certificates no waserver-cert-secret
waserver.server.libConfigName The name of the ConfigMap to store all custom liberty configuration no libertyConfigMap
waserver.server.routes.enabled If true, the routes controller rules is enabled no true true
waserver.server.routes.hostname The virtual hostname defined in the DNS used to reach the Server no server.mycluster.proxy
waserver.resources.requests.cpu The minimum CPU requested to run yes 1 1
waserver.resources.requests.memory The minimum memory requested to run yes 4Gi 4Gi
waserver.resources.limits.cpu The maximum CUP requested to run yes 4 4
waserver.resources.limits.memory The maximum memory requested to run yes 16Gi 16Gi
waserver.persistence.enabled If true, persistent volumes for the pods are used no true true
waserver.persistence.useDynamicProvisioning If true, StorageClasses are used to dynamically create persistent volumes for the pods no true true
waserver.persistence.dataPVC.name The prefix for the Persistent Volumes Claim name no data data
waserver.persistence.dataPVC.storageClassName The name of the StorageClass to be used. Leave empty to not use a storage class no nfs-dynamic
waserver.persistence.dataPVC.selector.label Volume label to bind (only limited to single label) no my-volume-label
waserver.persistence.dataPVC.selector.value Volume label value to bind (only limited to single value) no my-volume-value
waserver.persistence.dataPVC.size The minimum size of the Persistent Volume no 5Gi 5Gi
waserver.persistence.extraVolumes A list of additional extra volumes no custom-volume-1
waserver.persistence.extraVolumeMounts A list of additional extra volumes mounts no custom-volume-1
waserver.enableBmEventsLogging Enables and disables logging no true
waserver.server.exposeServiceType The network enablement configuration implemented. Valid values: LOAD BALANCER or INGRESS yes INGRESS
waserver.server.exposeServiceAnnotation Annotations of either the resource of the service or the resource of the ingress, customized in accordance with the cloud provider yes
waserver.server.networkpolicyEgress Controls network traffic and how a component pod is allowed to communicate with other pods. Customize egress policy. If empty, no egress policy is defined no See Network enablement
waserver.server.ingressHostName The virtual hostname defined in the DNS used to reach the Server yes, only if the network enablement implementation is INGRESS
waserver.server.ingressSecretName The name of the secret to store certificates used by the ingress. If not used, leave it empty yes, only if the network enablement implementation is INGRESS wa-server-ingress-secret
waserver.server.nodeAffinityRequired A set of rules that determines on which nodes a server can be deployed using custom labels on nodes and label selectors specified in pods. no See Network enablement
waserver.server.ftaName The name of the Workload Automation workstation for this installation. no WA-SERVER
waserver.server.licenseServerId The ID of the license server yes
waserver.server.licenseServerUrl The URL of the license server no
waserver.server.otel_traces_exporter Trace exporter to be used no otlp
waserver.server.otel_exporter_otlp_endpoint A base endpoint URL for any signal type, with an optionally-specified port number. Helpful for when you’re sending more than one signal to the same endpoint and want one environment variable to control the endpoint. no http://localhost:4317
waserver.server.otel_exporter_otlp_traces_endpoint Endpoint URL for trace data only, with an optionally-specified port number. Typically ends with v1/traces when using OTLP/HTTP. no http://localhost:4317
waserver.server.otel_exporter_otlp_protocol Specifies the OTLP transport protocol to be used for all telemetry data. no grpc
waserver.server.otel_exporter_otlp_traces_protocol Specifies the OTLP transport protocol to be used for trace data. no grpc
  • FileProxy parameters

The following table lists the configurable parameters of the chart relative to the FileProxy and an example of their values:

Parameter Description Mandatory Example Default
wafileproxy.replicaCount Number of replicas to deploy yes 1 1
wafileproxy.image.repository HCL Workload Automation fileProxy image repository yes
wafileproxy.image.tag HCL Workload Automation fileProxy image tag yes
wafileproxy.image.pullPolicy image pull policy yes Always Always
wafileproxy.affinity A set of rules that determines on which nodes an fileProxy can be deployed using custom labels on nodes and label selectors specified in pods. no
wafileproxy.nameOverride override the name of the release no workload-automation
wafileproxy.fullnameOverride override the fullname of the release no full-wa
wafileproxy.fileProxy.pwdSecretName The name of the secret to store all passwords no Pool1, Pool2
wafileproxy.fileProxy.fileProxy.useCustomizedCert If true, customized SSL certificates are used no no no
wafileproxy.fileProxy.fileProxy.certSecretName The name of the secret to store customized SSL certificates no wafileproxy-cert-secret
wafileproxy.fileProxy.containerDebug The container is executed in debug mode no no no
wafileproxy.fileProxy.port The port of the fileProxy deployment yes 60 60
wafileproxy.fileProxy.route.enabled enable or disable route resource in OpenShift no false
wafileproxy.fileProxy.route.exposeServiceType The network enablement configuration implemented. Valid values: LOAD BALANCER or INGRESS true LOAD_BALANCER
wafileproxy.fileProxy.route.exposeServiceAnnotation Annotations of either the resource of the service or the resource of the ingress, customized in accordance with the cloud provider no
wafileproxy.podAnnotations You can use Kubernetes annotations to attach arbitrary non-identifying metadata to objects no
wafileproxy.podSecurityContext defines privilege and access control settings for a Pod or Container no
wafileproxy.ingress.annotations Defines annotations for ingress objects no
wafileproxy.ingress.hosts.host Ingress hostname no
wafileproxy.ingress.hosts.paths Ingress paths no
wafileproxy.ingress.tls Ingress certificate yes
wafileproxy.resources The resources requested to run every instances yes 200m 200m
wafileproxy.autoscaling.enabled Enabling autoscaling yes true false
wafileproxy.autoscaling.minReplicas The minimum number of replicas of the deployment no 1 1
wafileproxy.autoscaling.maxReplicas The maximum number of replicas of the deployment no 100 100
wafileproxy.autoscaling.targetCPUUtilizationPercentage The number of CPU to use expressed in percentage yes 80 80
wafileproxy.nodeSelector specifies a map of key-value pairs. For the pod to be eligible to run on a node, the node must have each of the indicated key-value pairs as labels no
wafileproxy.tolerations Tolerations are applied to pods, and allow (but do not require) the pods to schedule onto nodes with matching taints no

Configuring

The following procedures are ways in which you can configure the default deployment of the product components. They include the following configuration topics:

Network enablement

The HCL Workload Automation server and console can use two different ways to route external traffic into the Kubernetes Service cluster:

  • A load balancer service that redirects traffic
  • An ingress service that manages external access to the services in the cluster

You can freely switch between these two types of configuration.

Network policy

You can specify an egress network policy to include a list of allowed egress rules for the server, console, and agent components. Each rule allows traffic leaving the cluster which matches both the "to" and "ports" sections. For example, the following sample demonstrates how to allow egress to another destination:

networkpolicyEgress:

- name: to-mdm
  egress:
  - to:
    - podSelector:
        matchLabels:
	  app.kubernetes.io/name: waserver
    - port: 31116
      protocol: TCP
- name: dns
  egress:
    - to:
      - namespaceSelector:
          matchLabels:
	    name: kube-system
    - ports:
        - port: 53
	  protocol: UDP
	- port: 53
	  protocol: TCP

For more information, see Network Policies.

Node affinity Required

You can also specify node affinity required to determine on which nodes a component can be deployed using custom labels on nodes and label selectors specified in pods. The following is an example:

nodeAffinityRequired:

-key: iwa-node
  operator: In
  values:
  - 'true'

where iwa-node represents the value of the node affinity required.

Load balancer service

  • Server:

    To configure a load balancer for the server, follow these steps:

  1. Locate the following parameters in the values.yaml file:

     exposeServiceType
     exposeServiceAnnotation
    

For more information about these configurable parameters, see the Server parameters table.

  1. Set the value of the exposeServiceType parameter to LoadBalancer.

  2. In the exposeServiceAnnotation section, uncomment the lines in this section as follows:

Amazon EKS

	service.beta.kubernetes.io/aws-load-balancer-type: nlb
	service.beta.kubernetes.io/aws-load-balancer-internal: "true"

Microsoft Azure

	service.beta.kubernetes.io/azure-load-balancer-internal: "true"

Google GKE

	networking.gke.io/load-balancer-type: "Internal"
  1. Specify the load balancer type and set the load balancer to internal by specifying "true".
  • Console:

    Because of a limitation with sticky sessions, you can only use the load balancer on the console component for a single console instance. Configure the load balancer for the console as follows:

  1. Locate the following parameters in the values.yaml file:

     exposeServiceType
     exposeServiceAnnotation
    

    For more information about these configurable parameters, see the Console parameters table.

  2. Set the value of the exposeServiceTypeparameter to LoadBalancer.

    Note: You can also set the value of the exposeServiceType parameter toLoadBalancer_sessionAffinity for Azure AKS and Google GKE. This parameter ensures each user session always remains active on the same pod, providing a smooth and seamless user experience.

  3. In the exposeServiceAnnotation section, uncomment the lines in this section as follows:

Amazon EKS

	service.beta.kubernetes.io/aws-load-balancer-backend-protocol: https
	service.beta.kubernetes.io/aws-load-balancer-type: "clb"
	#service.beta.kubernetes.io/aws-load-balancer-type: "nlb"
	service.beta.kubernetes.io/aws-load-balancer-internal: "true"

Microsoft Azure

	service.beta.kubernetes.io/azure-load-balancer-internal: "true"		

Google GKE

	networking.gke.io/load-balancer-type: "Internal"
  1. Specify the load balancer protocol and type.

  2. Set the load balancer to internal by specifying "true".

Ingress service

  • Server:

    To configure an ingress for the server, follow these steps:

  1. Locate the following parameters in the values.yaml file:

     exposeServiceType
     exposeServiceAnnotation
    

    For more information about these configurable parameters, see the Server parameters table.

  2. Set the value of the exposeServiceTypeparameter to Ingress.

  3. In the exposeServiceAnnotation section, leave the following lines as comments:

Amazon EKS

	#service.beta.kubernetes.io/aws-load-balancer-type:nlb
	#service.beta.kubernetes.io/aws-load-balancer-internal: "true"

Microsoft Azure

	#service.beta.kubernetes.io/azure-load-balancer-internal: "true"	

Microsoft Azure

            #networking.gke.io/load-balancer-type: "Internal"
  • Console:

    To configure an ingress for the console, follow these steps:

  1. Locate the following parameters in the values.yaml file:

     exposeServiceType
     exposeServiceAnnotation
    

For more information about these configurable parameters, see the Console parameters table.

  1. Set the value of the exposeServiceTypeparameter to Ingress.

  2. In the exposeServiceAnnotation section, uncomment only the line related to the cert-manager issuer and set the value. Leave the other lines as comments:

      cert-manager.io/issuer: wa-ca-issuer
     #service.beta.kubernetes.io/aws-load-balancer-backend-protocol: https
     #service.beta.kubernetes.io/aws-load-balancer-type: "clb"
     #service.beta.kubernetes.io/aws-load-balancer-type: "nlb"
     #service.beta.kubernetes.io/aws-load-balancer-internal: "true"
     #service.beta.kubernetes.io/azure-load-balancer-internal: "true"
     #networking.gke.io/load-balancer-type: "Internal"
    

Enabling communication from a Kubernetes agents without using certificates

If you want to install the agents without using certificates and also enable communication with the server through the JWT Token, add a secret with the engine credentials. This applies if the agent is connected to a distributed server. Also ensure to enable the enableJWT parameter in the agent configuration section. Ensure the following parameters are set in the secret:

WA_USER_ENGINE

WA_USER_ENGINE_PASSWORD

Where

WA_USER_ENGINE is the engine user encoded in base64 encoding

WA_USER_ENGINE_PASSWORD is the engine password encoded in base64 encoding

Ensure the name of the secret is < namespace >-waagent-secret.

See the following example:

	apiVersion: v1 
	kind: Secret 
	metadata: 
	  name: <namespace>-waagent-secret
	  namespace: <namespace>
	type: "Opaque"
	data:  
	  WA_USER_ENGINE: <engineUserBase64>
	  WA_USER_ENGINE_PASSWORD: <engineUserPasswordBase64>

As an alternative to specifying username and password, you can create a new secret named < namespace >-waagent-secret adding the WA_API_KEY parameter. Ensure you specify a valid API key as value of the parameter.

See the following example:

	apiVersion: v1 
        kind: Secret 
        metadata: 
          name: <namespace>-waagent-secret
          namespace: <namespace>
        type: "Opaque"
        data:  
          WA_API_KEY: <validApiKey> 

Enabling communication between product components in an on-premises offering with components in the Cloud

Follow these steps to manage certificates with on-premises components.

On-premises agents: To correctly trigger actions specified in the event rules defined on the agent, install an on-premises agent passing the -gateway local parameter.

To configure an on-premises agent to communicate with components in the cloud:

  1. Install the agent using the twinst script on a local computer passing the -gateway local parameter. If there are already other agents installed, the EIF port might already be in use by another instance. Specify a different port by passing the following parameter to the twsinst script: -gweifport <free-port>.

  2. Make a copy of the following cloud server certificates located in the following path <DATA_DIR>/ITA/cpa/ita/cert:

  • TWSClientKeyStoreJKS.sth
  • TWSClientKeyStoreJKS.jks
  • TWSClientKeyStore.sth
  • TWSClientKeyStore.kdb
  1. Replace the files on the on-premises agent in the same path.

On-premises console engine connection (connection between an on-premises console with a server in the cloud):

  1. Copy the public CA root certificate from the server. Refer to the HCL Workload Automation product documentation for details about creating custom certificates for communication between the server and the console: Customizing certificates.

  2. To enable the changes, restart the Console workstation.

On-premises engine connection (connection between a console in the cloud and an on-premises engine or another engine in a different namespace):

Access the master (server or pod) and extract the CA root certificate and, to add it to the console trustkeystore, create a secret in the console namespace with the extracted key encoded in base64 as follows:

        apiVersion: v1
	kind: Secret
	metadata:
	  name: <yourcert-server-crt>
	  namespace: <workload_automation_namespace>
	  labels:
	    wa-import: 'true'
	type: kubernetes.io/tls
	data:
	  tls.crt: <base64_encoded_certificate>
	  tls.key: ''

Defining a z/OS engine in the Z connector from a Dynamic Workload Console deployed on Cloud

To perform this operation, see the information available at Defining a z/OS engine in the Z connector. The information at this link also applies to the cloud environment. If you want to apply the same configuration to all instances, create a configMap containing all xml files and use the waconsole.console.libConfigName parameter to provide the name of your configMap.

Scaling the product

By default a single server, console, and agent is installed. If you want to change the topology for HCL Workload Automation, then increase or decrease the values of the replicaCount parameter in the values.yaml file for each component and save the changes.

Scaling up or down

To scale one or more HCL Workload Automation components up or down:

Modify the values of the replicaCount parameter in the values.yaml file for each component accordingly, and save the changes.

Note: When you scale up a server, the additional server instances are installed with the Backup Master role, and the workstation definitions are automatically saved to the HCL Workload Automation relational database. To complete the scaling up of a server component, run JnextPlan -for 0000 -noremove from the server that has the role of master domain manager to add new backup master workstations to the current plan. The agent workstations installed on the new server instances are automatically saved in the database and linked to the Broker workstation with no further manual actions.

Note:

  • When you scale down each type of component, the persistent volume (PV) that the storage class created for the pod instance is not deleted to avoid losing data should the scale down not be desired. When you need to perform a subsequent scaling up, new component instances are installed by using the old PVs.
  • When you scale down server or agent component, the workstation definitions are not removed from the database, so you can manually delete them or set them to ignore to avoid having a non-working workstation in the plan. If you need an immediate change to the plan, run the following command from the master workstation:
    JnextPlan -for 0000 -remove

Scaling to 0

The HCL Workload Automation Helm chart does not support automatic scaling to zero. If you want to manually scale the Dynamic Workload Console component to zero, set the value of the replicaCount parameter to zero. To maintain the current HCL Workload Automation scheduling and topology, do not set the replicaCount value for the server and agent components to zero.

Proportional scaling

The HCL Workload Automation Helm chart does not support proportional scaling.

Managing custom PEM certificates

  • ca.crt
  • tls.key
  • tls.crt

If you want to use custom certificates, set useCustomizedCert:true and use kubectl to apply the secret in the <workload_automation_namespace>. For the master domain manager, type the following command:

kubectl create secret generic waserver-cert-secret --from-file=ca.crt --from-file=tls.key --from-file=tls.crt -n <workload-automation-namespace>   

For the Dynamic Workload Console, type the following command:

 kubectl create secret generic waconsole-cert-secret --from-file=ca.crt --from-file=tls.key --from-file=tls.crt -n <workload_automation_namespace>   
   

For the dynamic agent, type the following command:

kubectl create secret generic waagent-cert-secret --from-file=ca.crt --from-file=tls.key --from-file=tls.crt -n <workload_automation_namespace>    

where, ca.crt, tls.key, and tls.crt are your customized certificates.

For details about custom certificates, see Connection security overview.

(**) Note: if you set db.sslConnection:true, you must also set the useCustomizeCert setting to true (on both server and console charts) and, in addition, you must add the following certificates in the customized SSL certificates secret on both the server and console charts:

  • ca.crt
  • tls.key
  • tls.crt

Customized files must have the same name as the ones listed above.

If you want to use SSL connection to DB, set db.sslConnection:true and useCustomizedCert:true in the values.yaml files for server and console, then use kubectl to create the secret in the same namespace where you want to deploy the chart:

kubectl create secret generic <release_name>-secret --from-file=ca.crt --from-file=tls.key --from-file=tls.crt -n --namespace=<workload_automation_namespace>

If you define custom certificates, you are in charge of keeping them up to date, therefore, ensure you check their duration and plan to rotate them as necessary. To rotate custom certificates, delete the previous secret and upload a new secret, containing new certificates. The pod restarts automatically and the new certificates are applied.

Managing your custom certificates (DEPRECATED STARTING FROM V 10)

This procedure is deprecated starting from v 10. Use the Managing custom PEM certificates procedure instead. Create a secret containing the customized files that will replace the Server default ones in the <workload_automation_namespace>. Customized files must have the same name as the default ones.

  • TWSClientKeyStoreJKS.sth
  • TWSClientKeyStore.kdb
  • TWSClientKeyStore.sth
  • TWSClientKeyStoreJKS.jks
  • TWSServerTrustFile.jks
  • TWSServerTrustFile.jks.pwd
  • TWSServerKeyFile.jks
  • TWSServerKeyFile.jks.pwd
  • ltpa.keys (The ltpa.keys certificate is required only if you use Single Sign-On with LTPA)

Use kubectl to apply the secret in the <workload_automation_namespace>. For the master domain manager, type the following command:

kubectl create secret generic waserver-cert-secret --from-file=TWSClientKeyStore.kdb --from-file=TWSClientKeyStore.sth --from-file=TWSClientKeyStoreJKS.jks --from-file=TWSClientKeyStoreJKS.sth --from-file=TWSServerKeyFile.jks --from-file=TWSServerKeyFile.jks.pwd --from-file=TWSServerTrustFile.jks --from-file=TWSServerTrustFile.jks.pwd -n <workload-automation-namespace>   

For the Dynamic Workload Console, type the following command:

kubectl create secret generic waconsole-cert-secret --from-file=TWSServerKeyFile.jks --from-file=TWSServerKeyFile.jks.pwd --from-file=TWSServerTrustFile.jks --from-file=TWSServerTrustFile.jks.pwd --from-file=ltpa.keys -n <workload_automation_namespace>   
   

For the dynamic agent, type the following command:

kubectl create secret generic waagent-cert-secret --from-file=TWSClientKeyStore.kdb --from-file=TWSClientKeyStore.sth --from-file=TWSClientKeyStoreJKS.jks --from-file=TWSClientKeyStoreJKS.sth -n <workload_automation_namespace>    

where, TWSClientKeyStoreJKS.sth, TWSClientKeyStore.kdb, TWSClientKeyStore.sth, TWSClientKeyStoreJKS.jks, TWSServerTrustFile.jks and TWSServerKeyFile.jks are the Container keystore and stash file containing your customized certificates.

For details about custom certificates, see Connection security overview.

Note: Passwords for "TWSServerTrustFile.jks" and "TWSServerKeyFile.jks" files must be entered in the respective "TWSServerTrustFile.jks.pwd" and "TWSServerKeyFile.jks.pwd" files.

If you want to use SSL connection to DB, set db.sslConnection:true and useCustomizedCert:true in the values.yaml files for the server and console, then use kubectl to create the secret with the required files in the same namespace where you want to deploy the chart:

 kubectl create secret generic <release_name>-secret --from-file=TWSServerTrustFile.jks --from-file=TWSServerKeyFile.jks --from-file=TWSServerTrustFile.jks.pwd --from-file=TWSServerKeyFile.jks.pwd --namespace=<workload_automation_namespace>

Storage

Storage requirements for the workload

HCL Workload Automation requires persistent storage for each component (server, console and agent) that you deploy to maintain the scheduling workload and topology.

To make all of the configuration and runtime data persistent, the Persistent Volume you specify must be mounted in the following container folder:

/home/wauser

The Pod is based on a StatefulSet. This guarantees that each Persistent Volume is mounted in the same Pod when it is scaled up or down.

For test purposes only, you can configure the chart so that persistence is not used.

HCL Workload Automation can use either dynamic provisioning or static provisioning using a pre-created persistent volume to allocate storage for each component that you deploy. You can pre-create Persistent Volumes to be bound to the StatefulSet using Label or StorageClass. It is highly recommended to use persistence with dynamic provisioning. In this case, you must have defined your own Dynamic Persistence Provider. HCL Workload Automation supports the following provisioning use cases:

  • Kubernetes dynamic volume provisioning to create both a persistent volume and a persistent volume claim. This type of storage uses the default storageClass defined by the Kubernetes admin or by using a custom storageClass which overrides the default. Set the values as follows:

    • persistence.enabled:true (default)
    • persistence.useDynamicProvisioning:true(default)

Specify a custom storageClassName per volume or leave the value blank to use the default storageClass.

  • Persistent storage using a predefined PersistentVolume set up prior to the deployment of this chart. Pre-create a persistent volume. If you configure the label=value pair described in the following Note, then the persistent volume claim is automatically generated by the Helm chart and bound to the persistent volume you pre-created. Set the global values as follows:

    • persistence.enabled:true
    • persistence.useDynamicProvisioning:false

Note: By configuring the following two parameters, the persistent volume claim is automatically generated. Ensure that this label=value pair is inserted in the persistent volume you created:

  • <wa-component>.persistence.dataPVC.selector.label
  • <wa-component>.persistence.dataPVC.selector.value

Let the Kubernetes binding process select a pre-existing volume based on the accessMode and size. Use selector labels to refine the binding process.

Before you deploy all of the components, you have the opportunity to choose your persistent storage from the available persistent storage options in AWS Elastic Kubernetes Service that are supported by HCL Workload Automation or, you can leave the default storageClass.
For more information about all of the supported storage classes, see the table in Storage classes static PV and dynamic provisioning.

If you create a storageClass object or use the default one, ensure that you have a sufficient amount of backing storage for your HCL Workload Automation components.
For more information about the required amount of storage you need for each component, see the Resources Required section.

Custom storage class: Modify the the persistence.dataPVC.storageClassName parameter in the YAML file by specifying the custom storage class name, when you deploy the HCL Workload Automation product components.

Default storage class: Leave the values for the persistence.dataPVC.storageClassName parameter blank in the YAML file when you deploy the HCL Workload Automation product components.
For more information about the storage parameter values to set in the YAML file, see the tables, Agent parameters, Dynamic Workload Console parameters, and Server parameters (master domain manager).

File system permissions

File system security permissions need to be well known to ensure uid, gid, and supplemental gid requirements can be satisfied. On Kubernetes native, UID 999 is used.

Persistent volume storage access modes

HCL Workload Automation supports only ReadWriteOnce (RWO) access mode. The volume can be mounted as read-write by a single node.

Report CLI

To run reports in batch mode, perform the following steps:

  1. Browse to /home/wauser/wadata/config/report
  2. Open the common.properties file in a flat-text editor.
  3. Edit the file inserting the information for your database. Instructions on editing the file are provided in the file itself.

The Report CLI is now ready for running. To start the Report CLI, browse to /opt/wa/report and run the following command: ./reportcli.sh

Consider the following example:

./reportcli.sh -p reports/templates/jrh.properties -r my_report -commonPropsFile /home/wauser/wadata/config/report

For more information, see:

Running batch reports from the command line interface

Metrics monitoring

HCL Workload Automation uses Grafana to display performance data related to the product. This data includes metrics related to the server and console application servers (WebSphere Application Server Liberty Base), your workload, your workstations, critical jobs, message queues, the database connection status, and more. Grafana is an open source tool for visualizing application metrics. Metrics provide insight into the state, health, and performance of your deployments and infrastructure. HCL Workload Automation cloud metric monitoring uses an opensource Cloud Native Computing Foundation (CNCF) project called Prometheus. It is particularly useful for collecting time series data that can be easily queried. Prometheus integrates with Grafana to visualize the metrics collected. For more information about the metrics available, see Metrics monitoring documentation.

Setting the Grafana service

Before you set the Grafana service, ensure that you have already installed Grafana and Prometheus on your cluster. For information about deploying Grafana see Install Grafana. For information about deploying the open-source Prometheus project see Download Promotheus.

  1. Log in to your cluster. To identify where Grafana is deployed, retrieve the value for the <grafana-namespace> by running:

       helm list -A
    
  2. Download the grafana_values.yaml file by running:

     helm get values grafana -o yaml -n <grafana-namespace> grafana_values.yaml
    
  3. Modify the grafana_values.yaml file by setting the following parameter values:

     dashboards:
          SCProvider: true
          enabled: true
          folder: /tmp/dashboards
          label: grafana_dashboard
          provider:
     	 allowUiUpdates: false
     	 disableDelete: false
     	 folder: ""
     	 name: sidecarProvider
     	 orgid: 1
     	 type: file
          searchNamespace: ALL
    
  4. Update the grafana_values.yaml file in the Grafana pod by running the following command:

    helm upgrade grafana stable/grafana -f grafana_values.yaml -n <grafana-namespace>

  5. To access the Grafana console:

    a. Get the EXTERNAL-IP address value of the Grafana service by running:

     kubectl get services -n <grafana-namespace>
    

    b. Browse to the EXTERNAL-IP address and log in to the Grafana console.

Viewing the preconfigured dashboard in Grafana

To get an overview of the cluster health, you can view a selection of metrics on the predefined dashboard:

  1. In the left navigation toolbar, click Dashboards.

  2. On the Manage page, select the predefined dashboard named <workload_automation_namespace> <workload_automation_release_name>.

For more information about using Grafana dashboards see Dashboards overview.

Limitations

  • Limited to amd64 platforms.
  • Anonymous connections are not permitted.
  • When sharing Dynamic Workload Console resources, such as tasks, engines, scheduling objects and so on, to groups, ensure the user sharing the resource is a member of the group to which the user is sharing the resourc.
  • LDAP configuration on the chart is not supported. Manual configuration is required using the traditional LDAP configuration.

Documentation

To access the complete product documentation library for HCL Workload Automation, see the online documentation.

Troubleshooting

In case of problems related to deploying the product with containers, see Troubleshooting.

Known problems

Problem: The broker server cannot be contacted. The Dynamic Workload Broker command line requires additional configuration steps.

Workaround: Perform the following configuration steps to enable the Dynamic Workload Broker command line:

  1. From the machine where you want to use the Dynamic Workload Broker command line, master domain manager (server) or dynamic agent, locate the following file:

    /home/wauser/wadata/TDWB_CLI/config/CLIConfig.properties

  2. Modify the values for the fields, keyStore and trustStore, in the CLIConfig.properties file as follows:

    keyStore=/home/wauser/wadata/ITA/cpa/ita/cert/TWSClientKeyStoreJKS.jks

    trustStore=/home/wauser/wadata/ITA/cpa/ita/cert/TWSClientKeyStoreJKS.jks

  3. Save the changes to the file.

Change history

Added December 2023

  • New version released

Added November 2022

  • JSON Web Token (JWT) support

Added June 2022

  • Vulnerabilities fixes
  • Support for Kubernetes 1.22

Added March 2022

  • Workload Automation 10.1 official support released.
  • New Workload Designer for Workload Automation Dynamic Console.
  • FileProxy standalone support.
  • New Artificial Intelligence features with AIDA.

Added Dicember 2021

  • Official support for Openshift 4.2 or later by using helm charts deployment.
  • Workload Automation 9.5.0.05 support released.
  • RFE: support for custom volume and custom volumemounts inside Workload Automation pods.
  • licenseType attribute for managing product licenses (IBM Workload Scheduler only)

Added June 2021

  • Additional metrics are monitored by Prometheus and made available in the preconfigured Grafana dashboard.

  • Automation Hub integrations (plug-ins) now automatically installed with the product container deployment

  • New procedure for installing custom integrations

Added March 2021 - version 1.4.3

  • Image vulnerabilities fixed

Added March 2021 - version 1.4.2

  • Support for Google Kubernetes Engine (GKE)
  • Support for Google Cloud SQL for SQL Server

Added February 2021 - version 1.4.1

  • Support for Microsoft Azure Kubernetes Service (AKS)

  • New configurable parameters added to values.yaml file for agent, console and server components:

    • waagent.agent.networkpolicyEgress
    • waconsole.console.networkpolicyEgress
    • waserver.server.networkpolicyEgress
  • New optional configurable parameter added to the values.yaml file for the server component: waserver.server.ftaName which represents the name of the Workload Automation workstation for the installation.

  • RFE 148080: Provides the capability to constrain a product component pod to run on particular nodes The nodeAffinityRequired parameter has been added to the configurable parameters in the values.yaml file for the agent, console, and server components so you can determine on which nodes a component can be deployed using custom labels on nodes and label selectors specified in pods.