Skip to content

Commit

Permalink
Merge pull request #302 from HERA-Team/version030
Browse files Browse the repository at this point in the history
Version 0.3.0
  • Loading branch information
nkern authored Mar 2, 2021
2 parents 128f66a + 13b9adb commit 10c290f
Show file tree
Hide file tree
Showing 9 changed files with 334 additions and 200 deletions.
13 changes: 7 additions & 6 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,12 +26,13 @@
# Mock-import modules to allow build to complete without throwing errors
import mock
MOCK_MODULES = ['numpy', 'scipy', 'scipy.interpolate', 'scipy.integrate',
'pyuvdata', 'h5py', 'aipy', 'omnical', 'linsolve', 'hera_qm',
'uvtools', 'uvtools.dspec', 'hera_cal', 'hera_cal.utils', 'healpy',
'scikit-learn', 'astropy', 'astropy.cosmology', 'astropy.units',
'astropy.constants', 'matplotlib', 'matplotlib.pyplot',
'pylab', 'yaml', 'pyuvdata.utils', ]

'pyuvdata', 'h5py', 'aipy', 'aipy.const', 'omnical', 'linsolve',
'hera_qm', 'uvtools', 'uvtools.dspec', 'hera_cal',
'hera_cal.utils', 'healpy', 'scikit-learn', 'astropy',
'astropy.cosmology', 'astropy.units', 'astropy.constants',
'matplotlib', 'matplotlib.pyplot', 'pylab', 'yaml',
'pyuvdata.utils', 'hera_sim']

for mod_name in MOCK_MODULES:
sys.modules[mod_name] = mock.Mock()

Expand Down
2 changes: 1 addition & 1 deletion hera_pspec/VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
0.2.0
0.3.0
4 changes: 2 additions & 2 deletions hera_pspec/grouping.py
Original file line number Diff line number Diff line change
Expand Up @@ -825,7 +825,7 @@ def spherical_average(uvp_in, kbins, bin_widths, blpair_groups=None, time_avg=Fa
# bin covariance: C_sph = H.T C_cyl H
# cm shape (Npols, Ntimes, Ndlyblps, Ndlyblps)
cm = np.moveaxis(cov_array_real[spw], -1, 0)
cm = Ht @ cm @ H
cm = Ht @ cm.clip(-1e40, 1e40) @ H # clip infs
cov_array_real[spw] = np.moveaxis(cm, 0, -1)
cov_array_imag[spw] = np.zeros_like(cov_array_real[spw])

Expand Down Expand Up @@ -874,7 +874,7 @@ def spherical_average(uvp_in, kbins, bin_widths, blpair_groups=None, time_avg=Fa
uvp.lst_2_array = np.unique(uvp_in.lst_2_array)

# Add to history
uvp.history += version.history_string(notes=add_to_history)
uvp.history = "Spherically averaged with hera_pspec [{}]\n{}\n{}\n{}".format(version.git_hash[:15], add_to_history, '-'*40, uvp.history)

# validity check
if run_check:
Expand Down
7 changes: 5 additions & 2 deletions hera_pspec/plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -301,7 +301,7 @@ def delay_waterfall(uvp, blpairs, spw, pol, component='abs-real',
deltasq=False, log=True, lst_in_hrs=True,
vmin=None, vmax=None, cmap='YlGnBu', axes=None,
figsize=(14, 6), force_plot=False, times=None,
title_type='blpair', colorbar=True):
title_type='blpair', colorbar=True, **kwargs):
"""
Plot a 1D delay spectrum waterfall (or spectra) for a group of baselines.
Expand Down Expand Up @@ -374,6 +374,9 @@ def delay_waterfall(uvp, blpairs, spw, pol, component='abs-real',
colorbar : bool, optional
Whether to make a colorbar. Default: True
kwargs : keyword arguments
Additional kwargs to pass to ax.matshow()
Returns
-------
fig : matplotlib.pyplot.Figure
Expand Down Expand Up @@ -558,7 +561,7 @@ def delay_waterfall(uvp, blpairs, spw, pol, component='abs-real',
# plot waterfall
cax = ax.matshow(waterfall[key], cmap=cmap, aspect='auto',
vmin=vmin, vmax=vmax,
extent=[x[0], x[-1], y[-1], y[0]])
extent=[x[0], x[-1], y[-1], y[0]], **kwargs)

# ax config
ax.xaxis.set_ticks_position('bottom')
Expand Down
350 changes: 209 additions & 141 deletions hera_pspec/pspecdata.py

Large diffs are not rendered by default.

7 changes: 7 additions & 0 deletions hera_pspec/tests/test_grouping.py
Original file line number Diff line number Diff line change
Expand Up @@ -469,6 +469,13 @@ def test_spherical_average():
# bug check: in the past, combine after spherical average erroneously changed dly_array
assert sph == sph_c

# insert an inf into the arrays as a test
uvp2 = copy.deepcopy(uvp)
uvp2.cov_array_real[0][0], uvp2.cov_array_imag[0][0] = np.inf, np.inf
uvp2.stats_array['err'][0][0] = np.inf
sph = grouping.spherical_average(uvp, kbins, bin_widths)
assert np.isfinite(sph.cov_array_real[0]).all()

# exceptions
nt.assert_raises(AssertionError, grouping.spherical_average, uvp, kbins, 1.0)

Expand Down
11 changes: 8 additions & 3 deletions hera_pspec/tests/test_noise.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,22 +159,27 @@ def test_analytic_noise():
# get P_N estimate
auto_Tsys = utils.uvd_to_Tsys(uvd, beam, os.path.join(DATA_PATH, "test_uvd.uvh5"))
assert os.path.exists(os.path.join(DATA_PATH, "test_uvd.uvh5"))
utils.uvp_noise_error(uvp, auto_Tsys, err_type=['P_N','P_SN'])
utils.uvp_noise_error(uvp, auto_Tsys, err_type=['P_N','P_SN'], P_SN_correction=False)

# check consistency of 1-sigma standard dev. to 1%
cov_diag = uvp.cov_array_real[0][:, range(Nchan), range(Nchan)]
stats_diag = uvp.stats_array['P_N'][0]
frac_ratio = (cov_diag**0.5 - stats_diag) / stats_diag

assert np.abs(frac_ratio).mean() < 0.01

## check P_SN consistency of 1-sigma standard dev. to 1%
cov_diag = uvp_fg.cov_array_real[0][:, range(Nchan), range(Nchan)]
stats_diag = uvp.stats_array['P_SN'][0]
frac_ratio = (cov_diag**0.5 - stats_diag) / stats_diag

assert np.abs(frac_ratio).mean() < 0.01

# now compute unbiased P_SN and check that it matches P_N at high-k
utils.uvp_noise_error(uvp, auto_Tsys, err_type=['P_N','P_SN'], P_SN_correction=True)
frac_ratio = (uvp.stats_array["P_SN"][0] - uvp.stats_array["P_N"][0]) / uvp.stats_array["P_N"][0]
dlys = uvp.get_dlys(0) * 1e9
select = np.abs(dlys) > 3000
assert np.abs(frac_ratio[:, select].mean()) < 1 / np.sqrt(uvp.Nblpairts)

# clean up
os.remove(os.path.join(DATA_PATH, "test_uvd.uvh5"))

55 changes: 49 additions & 6 deletions hera_pspec/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1301,7 +1301,7 @@ def uvd_to_Tsys(uvd, beam, Tsys_outfile=None):
return uvd


def uvp_noise_error(uvp, auto_Tsys, err_type='P_N', precomp_P_N=None):
def uvp_noise_error(uvp, auto_Tsys=None, err_type='P_N', precomp_P_N=None, P_SN_correction=True):
"""
Calculate analytic thermal noise error for a UVPSpec object.
Adds to uvp.stats_array inplace.
Expand All @@ -1313,9 +1313,10 @@ def uvp_noise_error(uvp, auto_Tsys, err_type='P_N', precomp_P_N=None):
If err_type == 'P_SN', uvp should not have any
incoherent averaging applied.
auto_Tsys : UVData object
auto_Tsys : UVData object, optional
Holds autocorrelation Tsys estimates in Kelvin (see uvd_to_Tsys)
for all antennas and polarizations involved in uvp power spectra.
Needed for P_N computation, not needed if feeding precomp_P_N.
err_type : str or list of str, options = ['P_N', 'P_SN']
Type of thermal noise error to compute. P_N is the standard
Expand All @@ -1326,19 +1327,24 @@ def uvp_noise_error(uvp, auto_Tsys, err_type='P_N', precomp_P_N=None):
which uses uses Re[P(tau)] as a proxy for P_S.
To store both, feed as err_type = ['P_N', 'P_SN']
precomp_P_N : str
precomp_P_N : str, optional
If computing P_SN and P_N is already computed, use this key
to index stats_array for P_N rather than computing it from auto_Tsys.
P_SN_correctoin : bool, optional
Apply correction factor if computing P_SN to account for double
counting of noise.
"""
from hera_pspec import uvpspec_utils

# type checks
if isinstance(err_type, str):
err_type = [err_type]

# get metadata
lsts = np.unique(auto_Tsys.lst_array)
freqs = auto_Tsys.freq_array[0]
# get metadata if needed
if precomp_P_N is None:
lsts = np.unique(auto_Tsys.lst_array)
freqs = auto_Tsys.freq_array[0]

# iterate over spectral window
for spw in uvp.spw_array:
Expand Down Expand Up @@ -1393,10 +1399,47 @@ def uvp_noise_error(uvp, auto_Tsys, err_type='P_N', precomp_P_N=None):
if 'P_SN' in err_type:
# calculate P_SN: see Tan+2020 and
# H1C_IDR2/notebooks/validation/errorbars_with_systematics_and_noise.ipynb
# get signal proxy
P_S = uvp.get_data(key).real
# clip negative values
P_S[P_S < 0] = 0
P_SN = np.sqrt(np.sqrt(2) * P_S * P_N + P_N**2)
# catch nans, set to inf
P_SN[np.isnan(P_SN)] = np.inf
# set stats
uvp.set_stats('P_SN', key, P_SN)

# P_SN correction
if P_SN_correction and "P_SN" in err_type:
if precomp_P_N is None:
precomp_P_N = 'P_N'
apply_P_SN_correction(uvp, P_SN='P_SN', P_N=precomp_P_N)


def apply_P_SN_correction(uvp, P_SN='P_SN', P_N='P_N'):
"""
Apply correction factor to P_SN errorbar in stats_array to account
for double counting of noise by using data as proxy for signal.
See Jianrong Tan et al. 2021 (Errorbar methodologies).
Operates in place. Must have both P_SN and P_N in stats_array.
Args:
uvp : UVPSpec object
With P_SN and P_N errorbar (not variance) as a key in stats_array
P_SN : str
Key in stats_array for P_SN errorbar
P_N : str
Key in stats_array for P_N errorbar
"""
assert P_SN in uvp.stats_array
assert P_N in uvp.stats_array
for spw in uvp.spw_array:
# get P_SN and P_N
p_n = uvp.stats_array[P_N][spw]
p_sn = uvp.stats_array[P_SN][spw]
# derive correction
corr = 1 - (np.sqrt(1 / np.sqrt(np.pi) + 1) - 1) * p_n.real / p_sn.real.clip(1e-40, np.inf)
corr[np.isclose(corr, 0)] = np.inf
corr[corr < 0] = np.inf
# apply correction
uvp.stats_array[P_SN][spw] *= corr
85 changes: 46 additions & 39 deletions hera_pspec/uvpspec.py
Original file line number Diff line number Diff line change
Expand Up @@ -362,24 +362,22 @@ def get_integrations(self, key, omit_flags=False):

def get_r_params(self):
"""
decompress r_params dictionary (so it can be readily used).
in a pspecdata object, r_parms are stored as a dictionary
with one entry per baseline.
In uvpspec, the dictionary is compressed so that a single r_param entry
correspondsto multiple baselines and is stored as a json format string.
get_r_params() reads the compressed string and returns the dictionary
with the format
r_params: dictionary with parameters for weighting matrix.
Proper fields
and formats depend on the mode of data_weighting.
data_weighting == 'dayenu':
dictionary with fields
'filter_centers', list of floats (or float) specifying the (delay) channel numbers
at which to center filtering windows. Can specify fractional channel number.
'filter_half_widths', list of floats (or float) specifying the width of each
filter window in (delay) channel numbers. Can specify fractional channel number.
'filter_factors', list of floats (or float) specifying how much power within each filter window
is to be suppressed.
Return an `r_params` dictionary.
In a `PSpecData` object, the `r_params` are stored as a dictionary with
one entry per baseline.
In a `UVPSpec` object, the dictionary is compressed so that a single
`r_param` entry correspondsto multiple baselines and is stored as a
JSON format string.
This function reads the compressed string and returns the dictionary
with the correct following fields and structure.
Returns
-------
r_params : dict
Dictionary of r_params for this object.
"""
return uvputils.decompress_r_params(self.r_params)

Expand Down Expand Up @@ -1776,13 +1774,15 @@ def generate_noise_spectra(self, spw, polpair, Tsys, blpairs=None,
where scalar is the cosmological and beam scalar (i.e. X2Y * Omega_eff)
calculated from pspecbeam with noise_scalar = True, integration_time is
in seconds and comes from self.integration_array and Nincoherent is the
number of incoherent averaging samples and comes from
self.nsample_array. If component is 'real' or 'imag', P_N is divided by
an additional factor of sqrt(2).
number of incoherent averaging samples and comes from `self.nsample_array`.
If `component` is `real` or `imag`, P_N is divided by an additional
factor of sqrt(2).
If the polarizations specified are pseudo Stokes pol (I, Q, U or V)
then an extra factor of 2 is divided.
If form == 'DelSq' then a factor of |k|^3 / (2pi^2) is multiplied.
If `form` is `DelSq` then a factor of `|k|^3 / (2pi^2)` is multiplied.
If real is True, a factor of sqrt(2) is divided to account for
discarding imaginary noise component.
Expand Down Expand Up @@ -1822,8 +1822,9 @@ def generate_noise_spectra(self, spw, polpair, Tsys, blpairs=None,
Number of frequency bins to use in integrating power spectrum
scalar in pspecbeam. Default: 2000.
component : str, options=['real', 'imag', 'abs']
If component is real or imag, divide by an extra factor of sqrt(2)
component : str
Options=['real', 'imag', 'abs'].
If component is real or imag, divide by an extra factor of sqrt(2).
Returns
-------
Expand Down Expand Up @@ -1909,14 +1910,14 @@ def generate_noise_spectra(self, spw, polpair, Tsys, blpairs=None,

def average_spectra(self, blpair_groups=None, time_avg=False,
blpair_weights=None, error_field=None, error_weights=None,
inplace=True):
inplace=True, add_to_history=''):
"""
Average power spectra across the baseline-pair-time axis, weighted by
each spectrum's integration time.
This is an "incoherent" average, in the sense that this averages power
spectra, rather than visibility data. The 'nsample_array' and
'integration_array' will be updated to reflect the averaging.
spectra, rather than visibility data. The `nsample_array` and
`integration_array` will be updated to reflect the averaging.
In the case of averaging across baseline pairs, the resultant averaged
spectrum is assigned to the zeroth blpair in the group. In the case of
Expand All @@ -1929,14 +1930,15 @@ def average_spectra(self, blpair_groups=None, time_avg=False,
equivalent to cylindrical binning in 3D k-space.
If you want help constructing baseline-pair groups from baseline
groups, see self.get_blpair_groups_from_bl_groups.
groups, see `self.get_blpair_groups_from_bl_groups`.
Parameters
----------
blpair_groups : list
List of list of baseline-pair group tuples or integers. All power
spectra in a baseline-pair group are averaged together. If a
baseline-pair exists in more than one group, a warning is raised.
Examples::
blpair_groups = [ [((1, 2), (1, 2)), ((2, 3), (2, 3))],
Expand All @@ -1951,6 +1953,7 @@ def average_spectra(self, blpair_groups=None, time_avg=False,
blpair_weights : list, optional
List of float or int weights dictating the relative weight of each
baseline-pair when performing the average.
This is useful for bootstrapping. This should have the same shape
as blpair_groups if specified. The weights are automatically
normalized within each baseline-pair group. Default: None (all
Expand All @@ -1965,17 +1968,21 @@ def average_spectra(self, blpair_groups=None, time_avg=False,
error_weights: string, optional
error_weights specify which kind of errors we use for weights
during averaging power spectra.
The weights are defined as $w_i = 1/ sigma_i^2$,
where $sigma_i$ is taken from the relevant field of stats_array.
If `error_weight' is set to None, which means we just use the
integration time as weights. If error_weights is specified,
then it also gets appended to error_field as a list.
Default: None
during averaging power spectra. The weights are defined as
$w_i = 1/ sigma_i^2$, where $sigma_i$ is taken from the relevant
field of stats_array.
If `error_weight` is set to `None`, which means we just use the
integration time as weights. If `error_weights` is specified,
then it also gets appended to `error_field` as a list.
Default: None.
inplace : bool, optional
If True, edit data in self, else make a copy and return. Default:
True.
If True, edit data in self, else make a copy and return.
Default: True.
add_to_history : str, optional
Added text to add to file history.
Notes
-----
Expand All @@ -1991,14 +1998,14 @@ def average_spectra(self, blpair_groups=None, time_avg=False,
error_field=error_field,
error_weights=error_weights,
blpair_weights=blpair_weights,
inplace=True)
inplace=True, add_to_history=add_to_history)
else:
return grouping.average_spectra(self, blpair_groups=blpair_groups,
time_avg=time_avg,
error_field=error_field,
error_weights=error_weights,
blpair_weights=blpair_weights,
inplace=False)
inplace=False, add_to_history=add_to_history)

def fold_spectra(self):
"""
Expand Down

0 comments on commit 10c290f

Please sign in to comment.