Skip to content

Code and Data for the paper: Graph Sampling-based Meta-Learning for Molecular Property Prediction [IJCAI2023]

License

Notifications You must be signed in to change notification settings

HICAI-ZJU/GS-Meta

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GS-Meta

This repository is the official implementation of GS-Meta proposed in: Graph Sampling-based Meta-Learning for Molecular Property Prediction, IJCAI 2023.

Environment

To run the code successfully, the following dependencies need to be installed:

python           3.7
torch            1.7.1
rdkit            2022.9.3
learn2learn      0.1.6
torch_geometric  1.6.3
torch_scatter    2.0.7

Step-by-step guidelines

Datasets

For data used in the experiments, please download data.zip from the release page in this repo, then extract the downloaded file and save the contents in the data directory.

Project Overview

This project mainly contains the following parts.

├── data                              # dataset files                 
│   ├── sider                       
│   │   ├── sider.csv    
│   ├── tox21                 
│   │   ├── tox21.csv  
│   └── ...
├── datasets                        
│   ├── __init__.py
│   └── ...
├── models                        
│   ├── __init__.py
│   └── ...
├── pretraiend                        # pretrained GNN
│   ├── supervised_contextpred.pth
├── args_parser.py                      
├── explight.py                      
├── meta_learner.py                    
└── run.py                        

Running Script

 python run.py --dataset sider --n_support 10 --gpu 0 

Running parameters and descriptions are as follows:

Parameter Description Default Value Choices
dataset name of dataset sider tox21, sider, muv, pcba, toxcast-APR, toxcast-ATG, toxcast-BSK, toxcast-CEETOX, toxcast-CLD, toxcast-NVS, toxcast-OT, toxcast-Tanguay, toxcast-TOX21
n_support number of support molecules 10 1, 10
gpu which GPU to use 0 \
exp_name experiment name None \
exp_id experiment ID None \
eval_step evaluation interval 100 \

For Pre-GS-Meta, which is initialized with a pretrained GNN, the running script is:

 python run.py --dataset sider --n_support 10 --gpu 0 --mol_pretrain_load_path pretrained/supervised_contextpred.pth

References

If you use or extend our work, please cite the paper as follows:

@InProceedings{zhuang2023graph,
  title={Graph Sampling-based Meta-Learning for Molecular Property Prediction},
  author={Xiang Zhuang and Qiang Zhang and Bin Wu and Keyan Ding and Yin Fang and Huajun Chen},
  booktile={IJCAI},
  year={2023}
}

About

Code and Data for the paper: Graph Sampling-based Meta-Learning for Molecular Property Prediction [IJCAI2023]

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages