Skip to content

Commit

Permalink
Fixed agree_upto_lemma (and head_equivalent_def)
Browse files Browse the repository at this point in the history
  • Loading branch information
binghe committed Nov 28, 2024
1 parent 01016dc commit d83b2e6
Show file tree
Hide file tree
Showing 7 changed files with 1,103 additions and 673 deletions.
1,027 changes: 638 additions & 389 deletions examples/lambda/barendregt/boehmScript.sml

Large diffs are not rendered by default.

612 changes: 330 additions & 282 deletions examples/lambda/barendregt/head_reductionScript.sml

Large diffs are not rendered by default.

29 changes: 27 additions & 2 deletions examples/lambda/basics/appFOLDLScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ open HolKernel Parse boolLib bossLib;
open arithmeticTheory listTheory rich_listTheory pred_setTheory finite_mapTheory
hurdUtils listLib pairTheory;

open termTheory binderLib;
open termTheory binderLib basic_swapTheory;

val _ = new_theory "appFOLDL"

Expand Down Expand Up @@ -403,14 +403,39 @@ Proof
Induct_on ‘vs’ >> rw [LAM_eq_thm]
QED

fun RNEWS_TAC (vs, r, n) X :tactic =
qabbrev_tac ‘^vs = RNEWS ^r ^n ^X’
>> Know ‘ALL_DISTINCT ^vs /\ DISJOINT (set ^vs) ^X /\ LENGTH ^vs = ^n’
>- rw [RNEWS_def, Abbr ‘^vs’]
>> DISCH_THEN (STRIP_ASSUME_TAC o (REWRITE_RULE [DISJOINT_UNION']));

Theorem LAMl_RNEWS_11 :
!X r n1 n2 y1 y2. FINITE X ==>
(LAMl (RNEWS r n1 X) (VAR y1) =
LAMl (RNEWS r n2 X) (VAR y2) <=> n1 = n2 /\ y1 = y2)
Proof
rpt STRIP_TAC
>> reverse EQ_TAC >- (STRIP_TAC >> fs [])
>> Q_TAC (RNEWS_TAC (“vs1 :string list”, “r :num”, “n1 :num”)) ‘X’
>> Q_TAC (RNEWS_TAC (“vs2 :string list”, “r :num”, “n2 :num”)) ‘X’
>> DISCH_TAC
>> Know ‘size (LAMl vs1 (VAR y1)) = size (LAMl vs2 (VAR y2))’
>- (POP_ORW >> rw [])
>> simp [] (* n1 = n2 *)
>> DISCH_TAC
>> ‘vs1 = vs2’ by simp [Abbr ‘vs1’, Abbr ‘vs2’]
>> fs []
QED

(*---------------------------------------------------------------------------*
* funpow for lambda terms (using arithmeticTheory.FUNPOW)
*---------------------------------------------------------------------------*)

Overload funpow = “\f. FUNPOW (APP (f :term))”

Theorem FV_FUNPOW :
!(f :term) x n. FV (FUNPOW (APP f) n x) = if n = 0 then FV x else FV f UNION FV x
!(f :term) x n. FV (FUNPOW (APP f) n x) =
if n = 0 then FV x else FV f UNION FV x
Proof
rpt STRIP_TAC
>> Q.SPEC_TAC (‘n’, ‘i’)
Expand Down
20 changes: 20 additions & 0 deletions examples/lambda/basics/nomsetScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -454,6 +454,26 @@ QED
(* |- !p1 p2 x. lswapstr (p1 ++ p2) x = lswapstr p1 (lswapstr p2 x) *)
Theorem lswapstr_append = ISPEC “string_pmact” pmact_append

Theorem lswapstr_upperbound :
!xs ys v. LENGTH xs = LENGTH ys /\ DISJOINT (set xs) (set ys) /\
ALL_DISTINCT xs /\ ALL_DISTINCT ys ==>
lswapstr (ZIP (xs,ys)) v IN v INSERT set xs UNION set ys
Proof
rpt STRIP_TAC
>> qabbrev_tac ‘pi = ZIP (xs,ys)’
>> Cases_on ‘~MEM v (MAP FST pi) /\ ~MEM v (MAP SND pi)’
>- (‘lswapstr pi v = v’ by PROVE_TAC [lswapstr_unchanged'] \\
simp [])
>> simp [IN_INSERT, IN_UNION] >> DISJ2_TAC
>> gs [Abbr ‘pi’, MAP_ZIP]
>| [ (* goal 1 (of 2) *)
DISJ2_TAC \\
MATCH_MP_TAC MEM_lswapstr >> art [],
(* goal 2 (of 2) *)
DISJ1_TAC \\
MATCH_MP_TAC MEM_lswapstr' >> art [] ]
QED

(*---------------------------------------------------------------------------*
* Permutation of a function call (fnpm)
*---------------------------------------------------------------------------*)
Expand Down
6 changes: 6 additions & 0 deletions examples/lambda/basics/termScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,12 @@ Theorem FINITE_FV[simp]: FINITE (FV t)
Proof srw_tac [][supp_tpm, FINITE_GFV]
QED

Theorem FINITE_BIGUNION_IMAGE_FV[simp] :
FINITE (BIGUNION (IMAGE FV (set Ns)))
Proof
rw [] >> rw [FINITE_FV]
QED

fun supp_clause {con_termP, con_def} = let
val t = mk_comb(``supp ^t_pmact_t``, lhand (concl (SPEC_ALL con_def)))
in
Expand Down
7 changes: 7 additions & 0 deletions src/list/src/listScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -2306,6 +2306,13 @@ val ALL_DISTINCT_APPEND = store_thm (
(!e. MEM e l1 ==> ~(MEM e l2)))”,
Induct THEN SRW_TAC [] [] THEN PROVE_TAC []);

Theorem ALL_DISTINCT_APPEND' :
!l1 l2. ALL_DISTINCT (l1 ++ l2) <=>
ALL_DISTINCT l1 /\ ALL_DISTINCT l2 /\ DISJOINT (set l1) (set l2)
Proof
RW_TAC std_ss [ALL_DISTINCT_APPEND, DISJOINT_ALT]
QED

val ALL_DISTINCT_SING = store_thm(
"ALL_DISTINCT_SING",
“!x. ALL_DISTINCT [x]”,
Expand Down
75 changes: 75 additions & 0 deletions src/list/src/rich_listScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -2713,6 +2713,13 @@ Proof
>> rw [TAKE_LENGTH_TOO_LONG]
QED

Theorem IS_PREFIX_IMP_TAKE :
!l l1. l1 <<= l ==> l1 = TAKE (LENGTH l1) l
Proof
rw [IS_PREFIX_EQ_TAKE]
>> rw [LENGTH_TAKE]
QED

(* NOTE: This theorem can also be proved by IS_PREFIX_LENGTH_ANTI and
prefixes_is_prefix_total, but IS_PREFIX_EQ_TAKE is more natural.
*)
Expand Down Expand Up @@ -3513,6 +3520,74 @@ QED
end
(* end CakeML lemmas *)

(* BEGIN more lemmas of IS_SUFFIX *)
Theorem IS_SUFFIX_EQ_DROP :
!l l1. IS_SUFFIX l l1 <=> ?n. n <= LENGTH l /\ l1 = DROP n l
Proof
rw [GSYM IS_PREFIX_REVERSE, IS_PREFIX_EQ_TAKE]
>> EQ_TAC >> rpt STRIP_TAC
>| [ (* goal 1 (of 2) *)
Q.EXISTS_TAC ‘LENGTH l - n’ >> simp [] \\
ONCE_REWRITE_TAC [GSYM REVERSE_11] \\
POP_ASSUM (fn th => REWRITE_TAC [th]) \\
simp [TAKE_REVERSE, REVERSE_DROP],
(* goal 2 (of 2) *)
Q.EXISTS_TAC ‘LENGTH l - n’ >> simp [] \\
simp [TAKE_REVERSE, REVERSE_DROP] ]
QED

Theorem IS_SUFFIX_EQ_DROP' :
!l l1. IS_SUFFIX l l1 <=> ?n. l1 = DROP n l
Proof
rpt GEN_TAC
>> EQ_TAC
>- (rw [IS_SUFFIX_EQ_DROP] \\
Q.EXISTS_TAC ‘n’ >> REWRITE_TAC [])
>> STRIP_TAC
>> Cases_on ‘n <= LENGTH l’
>- (rw [IS_SUFFIX_EQ_DROP] \\
Q.EXISTS_TAC ‘n’ >> ASM_REWRITE_TAC [])
>> ‘LENGTH l <= n’ by rw []
>> ‘l1 = []’ by rw [DROP_EQ_NIL]
>> simp [IS_SUFFIX]
QED

Theorem IS_SUFFIX_IMP_DROP :
!l l1. IS_SUFFIX l l1 ==> l1 = DROP (LENGTH l - LENGTH l1) l
Proof
rw [IS_SUFFIX_EQ_DROP]
>> rw [LENGTH_DROP]
QED

Theorem IS_SUFFIX_IMP_LASTN :
!l l1. IS_SUFFIX l l1 ==> l1 = LASTN (LENGTH l1) l
Proof
rw [IS_SUFFIX_EQ_DROP]
>> rw [DROP_LASTN]
QED

Theorem LIST_TO_SET_PREFIX :
!l l1. l1 <<= l ==> set l1 SUBSET set l
Proof
rw [IS_PREFIX_EQ_TAKE']
>> rw [LIST_TO_SET_TAKE]
QED

Theorem LIST_TO_SET_SUFFIX :
!l l1. IS_SUFFIX l l1 ==> set l1 SUBSET set l
Proof
rw [IS_SUFFIX_EQ_DROP']
>> rw [LIST_TO_SET_DROP]
QED

Theorem IS_SUFFIX_ALL_DISTINCT :
!l l1. IS_SUFFIX l l1 /\ ALL_DISTINCT l ==> ALL_DISTINCT l1
Proof
rw [IS_SUFFIX_EQ_DROP']
>> MATCH_MP_TAC ALL_DISTINCT_DROP >> rw []
QED
(* END more lemmas of IS_SUFFIX *)

Theorem nub_GENLIST:
nub (GENLIST f n) =
MAP f (FILTER (\i. !j. (i < j) /\ (j < n) ==> f i <> f j) (COUNT_LIST n))
Expand Down

0 comments on commit d83b2e6

Please sign in to comment.