Skip to content

Add proofs about clock for fun-op-sem/imp #1310

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Oct 3, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
110 changes: 110 additions & 0 deletions examples/fun-op-sem/imp/impScript.sml
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@

open HolKernel Parse boolLib bossLib;
open stringLib integerTheory;
open listTheory arithmeticTheory;
val ect = BasicProvers.EVERY_CASE_TAC;

val _ = new_theory "imp";
Expand Down Expand Up @@ -103,4 +104,113 @@ val cval_ind = prove(

Theorem cval_ind[allow_rebind] = cval_ind

Theorem lrg_clk:
!c s t t' s1 t1.
t ≤ t' ∧ cval c s t = SOME (s1,t1) ==>
?t2. cval c s t' = SOME (s1,t2) ∧ t1 ≤ t2
Proof
recInduct cval_ind >>
rw[] >>~-
([`(While _ _)`],
Cases_on `t` >>
Cases_on `bval b s` >>
fs[Once cval_def] >>
first_x_assum $ qspecl_then [`t'-1`, `s1`, `t1`] assume_tac >>
Cases_on `cval c s n` >>
gvs[Once cval_def]
) >>~-
([`(If _ _ _)`],
first_x_assum $ qspecl_then [`t'`, `s1`, `t1`] assume_tac >>
rfs[cval_def]
) >>
gvs[cval_def] >>
fs[CaseEq"option"] >>
Cases_on `v` >>
fs[] >>
first_x_assum $ qspec_then `t'` assume_tac >>
rfs[]
QED

Theorem cval_mono:
!c s t t'.
t ≤ t' ∧ cval c s t ≠ NONE ==>
OPTION_MAP FST (cval c s t) = OPTION_MAP FST (cval c s t')
Proof
rpt strip_tac >>
Cases_on `cval c s t` >>
gs[] >>
Cases_on `x` >>
rev_drule_all lrg_clk >>
rw[] >>
simp[]
QED

Theorem lrg_clk2:
!c s t t' s1 t1 t2.
t1 ≤ t2 ∧ cval c s t = SOME (s1,t1) ∧ cval c s t' = SOME (s1,t2) ==>
t ≤ t'
Proof
recInduct cval_ind >>
rw[] >>~-
([`(While _ _)`],
fs[Once cval_def] >>
Cases_on `bval b s` >>
Cases_on `t` >>
Cases_on `t'` >>
fs[Once cval_def] >>
last_x_assum $ qspecl_then [`n'`, `s1`, `t1`, `t2`] assume_tac >>
rfs[CaseEq"option"] >>
rfs[] >>
Cases_on `v` >>
Cases_on `v'` >>
rfs[Once cval_def] >>
pop_assum mp_tac >>
simp[Once cval_def]
) >>
gvs[cval_def] >>
fs[CaseEq"option"] >>
first_x_assum irule >>
last_x_assum $ irule_at Any >>
Cases_on `v` >>
Cases_on `v'` >>
gvs[] >>
qexists `t2` >>
Cases_on `t <= t'` >>
fs[NOT_LESS_EQUAL] >>
imp_res_tac LESS_IMP_LESS_OR_EQ >>
drule cval_mono >>
disch_then $ qspecl_then [`c1`, `s`] assume_tac >>
gvs[]
QED

Theorem arb_resc:
!c s t s1 t1.
cval c s t = SOME (s1,t1) ==> !k. ?t'. cval c s t' = SOME (s1,k)
Proof
recInduct cval_ind >>
rw[] >>~-
([`(While _ _)`],
Cases_on `bval b s` >>
Cases_on `t` >>
fs[Once cval_def] >>
last_x_assum $ qspecl_then [`s1`, `t1`] assume_tac >>
rfs[Once cval_def] >>
pop_assum $ qspec_then `k` assume_tac >>
fs[] >>
qexists `t' + 1` >>
simp[]
) >>
gvs[cval_def] >>
fs[CaseEq"option"] >>
Cases_on `v` >>
fs[] >>
last_x_assum $ qspec_then `k` assume_tac >>
fs[] >>
last_x_assum $ qspec_then `t'` assume_tac >>
fs[] >>
qexists `t''` >>
qexists `(q, t')` >>
simp[]
QED

val _ = export_theory();