Skip to content

Commit

Permalink
Adattamento di index.md al nuovo readme
Browse files Browse the repository at this point in the history
  • Loading branch information
Antonella-Bilotta authored Oct 28, 2024
1 parent ef783ae commit 76c8eb1
Showing 1 changed file with 46 additions and 14 deletions.
60 changes: 46 additions & 14 deletions index.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ let MODPROVES_RULES,MODPROVES_INDUCT,MODPROVES_CASES =
### Deduction Lemma
```
MODPROVES_DEDUCTION_LEMMA
|- !S H p q. [S . H |~ p --> q] <=> [S . p INSERT H |~ q]
|- `!S H p q. [S . H |~ p --> q] <=> [S . p INSERT H |~ q]`
```

### Relational semantics
Expand Down Expand Up @@ -76,23 +76,25 @@ let valid = new_definition
### Soundness and consistency of K
```
K_CONSISTENT
|- ~ [{} . {} |~ False]
|- `~ [{} . {} |~ False]`
```

### Soundness and consistency of GL
```
GL_consistent
|- ~ [GL_AX . {} |~ False]
|- `~ [GL_AX . {} |~ False]`
```

### Completeness theorem

The proof is organized in three steps.
We can observe that, by working with HOL, it is possible to identify all those lines of reasoning that are _parametric_ for P (the specific propriety of each frame of a logic) and S (the set of axioms of the logic)
and develop each of of the three steps while avoiding code duplication as much as possible. In particular the step 3 is already fully formalised in HOLMS with the `GEN_TRUTH_LEMMA`.

#### STEP 1
Identification of a non-empty set of possible worlds, given by a subclass of maximal consistent sets of formulas.
Identification of a model <W,R,V> depending on a formula p and, in particular, of a non-empty set of possible worlds given by a subclass of maximal consistent sets of formulas.

Parametric Definitions in gen_completness.ml
Parametric Definitions in `gen_completness.ml` (parameters P, S)
```
let FRAME_DEF = new_definition
`FRAME = {(W:W->bool,R:W->W->bool) | ~(W = {}) /\
Expand All @@ -112,7 +114,7 @@ let GEN_STANDARD_MODEL_DEF = new_definition
(!a w. w IN W ==> (V a w <=> MEM (Atom a) w /\ Atom a SUBFORMULA p))`;;
```

Definitions in k_completness.ml
Definitions in `k_completness.ml` (P=K_FRAME, S={})
```
let K_FRAME_DEF = new_definition
`K_FRAME = {(W:W->bool,R) | (W,R) IN FRAME /\ FINITE W}`;;
Expand All @@ -137,7 +139,7 @@ K_STANDARD_MODEL_CAR
(!a w. w IN W ==> (V a w <=> MEM (Atom a) w /\ Atom a SUBFORMULA p))`
```

Definitions in gl_completness.ml
Definitions in `gl_completness.ml` (P=ITF, S=GL_AX)
```
let ITF_DEF = new_definition
`ITF =
Expand Down Expand Up @@ -172,7 +174,7 @@ GL_STANDARD_MODEL_CAR
#### STEP 2
Definition of a “standard” accessibility relation depending on axiom set S between these worlds such that the frame is appropriate to S.

Parametric definition of the standard relation in gen_completness.ml
Parametric definition of the standard relation in `gen_completness.ml` (parameter S)
```
let GEN_STANDARD_REL = new_definition
`GEN_STANDARD_REL S p w x <=>
Expand All @@ -181,7 +183,7 @@ let GEN_STANDARD_REL = new_definition
(!B. MEM (Box B) w ==> MEM B x)`;;
```

In k_completness.ml
Definitions in `k_completness.ml` (S={}) and demonstration of the Accessibility Lemma for K.
```
let K_STANDARD_REL_DEF = new_definition
`K_STANDARD_REL p = GEN_STANDARD_REL {} p`;;
Expand All @@ -202,7 +204,7 @@ K_ACCESSIBILITY_LEMMA_1
==> MEM (Box q) w`
```

In GL
Definitions in `gl_completness.ml` (S=GL_AX) and demonstration of the Accessibility Lemma for GL.
```
let GL_STANDARD_REL_DEF = new_definition
`GL_STANDARD_REL p w x <=>
Expand All @@ -224,7 +226,10 @@ GL_ACCESSIBILITY_LEMMA
```

#### STEP 3
Parametric truth lemma in gen_completness.ml
The reduction of the notion of forcing `holds (W,R) V q w` to that of a set-theoretic (list-theoretic) membership MEM q w
for every subformula q of p, through a specific atomic evaluation function on (W,R).

Parametric truth lemma in `gen_completness.ml` (parameters P, S)
```
GEN_TRUTH_LEMMA
|- `!P S W R p V q.
Expand All @@ -233,21 +238,48 @@ GEN_TRUTH_LEMMA
q SUBFORMULA p
==> !w. w IN W ==> (MEM q w <=> holds (W,R) V q w)`
```
Truth lemma specified for K in `k_completness.ml` (P=K_FRAME, S={})
```
let K_TRUTH_LEMMA = prove
(`!W R p V q.
~ [{} . {} |~ p] /\
K_STANDARD_MODEL p (W,R) V /\
q SUBFORMULA p
==> !w. w IN W ==> (MEM q w <=> holds (W,R) V q w)`,
REWRITE_TAC[K_STANDARD_MODEL_DEF] THEN MESON_TAC[GEN_TRUTH_LEMMA]);;
```
Truth lemma specified for GL in `gl_completness.ml` (P=ITF, S=GL_AX)
```
let GL_truth_lemma = prove
(`!W R p V q.
~ [GL_AX . {} |~ p] /\
GL_STANDARD_MODEL p (W,R) V /\
q SUBFORMULA p
==> !w. w IN W ==> (MEM q w <=> holds (W,R) V q w)`,
REWRITE_TAC[GL_STANDARD_MODEL_DEF] THEN MESON_TAC[GEN_TRUTH_LEMMA]);;
```

#### The Theorem

Completeness of K in k_completness.ml
Completeness of K in `k_completness.ml`.
This demonstration uses the `K_TRUTH_LEMMA` that specifies the `GEN_TRUTH_LEMMA`, therefore the first part of the demonstration of the completness theorem for K is completely parametrized.
```
K_COMPLETENESS_THM
|- `!p. K_FRAME:(form list->bool)#(form list->form list->bool)->bool |= p
==> [{} . {} |~ p]`
```

Completeness of GL in gl_completness.ml
Completeness of GL in `gl_completness.ml`
This demonstration uses the `GL_TRUTH_LEMMA` that specifies the `GEN_TRUTH_LEMMA`, therefore the first part of the demonstration of the completness theorem for GL is completely parametrized.
```
COMPLETENESS_THEOREM
GL_COMPLETENESS_THM
|- `!p. ITF:(form list->bool)#(form list->form list->bool)->bool |= p
==> [GL_AX . {} |~ p]`
```


### Finite model property and decidability

#### In K
Expand Down

0 comments on commit 76c8eb1

Please sign in to comment.