Skip to content

Haki-Malai/nn_audio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nn_audio

Audio Classifier

  • Takes a name of a dataset in the form below as input
dataset___
          ├── class#1
          │   ├── file11.wav
          │   └── file12.wav
          ├── class#2
          │   ├── file21.wav
          │   ├── file22.wav
          │   └── file23.wav
          ├── class#3
          │   ├── file31.wav
          │   ├── file32.wav
          │   └── file33.wav
                 ...
  • Uses the class names (i.e. class#1) as labels names
  • Uses 10% of the data for testing and prints evaluation results.
  • Returns an keras model and (optional) the data in a json file.

Requirements

  • Python 3(recomended >=3.6)
  • Pip (For installing other dependencies

Instalation

  • Linux:
    • $ git clone https://github.com/Haki-Malai/nn-audio
    • $ cd nn-audio
    • $ sudo bash install.sh (Adds 'audio_model' as command. If it does not work try running 'source ~.profile')
  • Windows:
    • Rename audio_model to audio_model.py

Usage

  • Linux:
    • $ audio_model --dataset_dir=dataset (For example. dataset_dir is pwd for default but i don't think it is able to run this way as the script will read itself in the directory )
  • Windows:
    • $ py audio_model.py --dataset_dir=dataset
  • All options:
    • --sample_rate (default=44100)
    • --min_track_duration (default=10)
    • --min_array_length (default=1000000)
    • --from_json (default=False)
    • --json_save (default=False)
    • --output_json (default="data.json")
    • --json_path (default="data.json")
    • --model_name (default="model")
    • --test_size (default=0.3)
    • --epochs (default=50)
    • --activation (default='relu')
    • --dropout (default='True')
    • --num_segments (default=5)

A lot of data-preperation code and ml training is based on this channel's tutorial, make sure you subscribe to him if you are interested in Machine Learning and Audio compinations

Releases

No releases published

Packages

No packages published