Skip to content

An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

License

Notifications You must be signed in to change notification settings

HelloItsDev/spark-movie-lens

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A scalable on-line movie recommender using Spark and Flask

This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens dataset to build a movie recommender using collaborative filtering with Spark's Alternating Least Saqures implementation. It is organised in two parts. The first one is about getting and parsing movies and ratings data into Spark RDDs. The second is about building and using the recommender and persisting it for later use in our on-line recommender system.

This tutorial can be used independently to build a movie recommender model based on the MovieLens dataset. Most of the code in the first part, about how to use ALS with the public MovieLens dataset, comes from my solution to one of the exercises proposed in the CS100.1x Introduction to Big Data with Apache Spark by Anthony D. Joseph on edX, that is also publicly available since 2014 at Spark Summit. Starting from there, I've added with minor modifications to use a larger dataset, then code about how to store and reload the model for later use, and finally a web service using Flask.

In any case, the use of this algorithm with this dataset is not new (you can Google about it), and this is because we put the emphasis on ending up with a usable model in an on-line environment, and how to use it in different situations. But I truly got inspired by solving the exercise proposed in that course, and I highly recommend you to take it. There you will learn not just ALS but many other Spark algorithms.

It is the second part of the tutorial the one that explains how to use Python/Flask for building a web-service on top of Spark models. By doing so, you will be able to develop a complete on-line movie recommendation service.

Quick start

The file server/server.py starts a CherryPy server running a Flask app.py to start a RESTful web server wrapping a Spark-based engine.py context. Through its API we can perform on-line movie recommendations.

Please, refer the the second notebook for detailed instructions on how to run and use the service.

Contributing

Contributions are welcome! For bug reports or requests please submit an issue.

Contact

Feel free to contact me to discuss any issues, questions, or comments.

License

This repository contains a variety of content; some developed by Jose A. Dianes, and some from third-parties. The third-party content is distributed under the license provided by those parties.

The content developed by Jose A. Dianes is distributed under the following license:

Copyright 2016 Jose A Dianes

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

About

An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 89.0%
  • Python 10.8%
  • Shell 0.2%