-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_on_img.py
44 lines (31 loc) · 1.39 KB
/
run_on_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
import cv2 # used for resize. if you dont have it, use anything else
import numpy as np
import argparse
import time
from artsyml import ArtsyML
def get_args():
parser = argparse.ArgumentParser(description='ArtsyML')
parser.add_argument('--image')
parser.add_argument('--output', default='artsy_results', help='Specify directory where to save results')
parser.add_argument('--style_img', default='./images_style/style3.jpg')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
print("args",args)
style_path = args.style_img
img_dir_path = args.image
if os.path.isdir(img_dir_path):
list_images = [os.path.join(img_dir_path, file) for file in os.listdir(img_dir_path) if (file.endswith('.png') or file.endswith('.jpeg') or file.endswith('.jpg'))]
else:
list_images = [img_dir_path]
if not os.path.exists(args.output): os.mkdir(args.output)
_artsyml = ArtsyML(style_path, which_seg_model='Mask-RCNN')
print('model loaded')
for img_path in list_images:
img_file = os.path.split(img_path)[-1]
img = cv2.imread(img_path).astype(np.uint8)
result = _artsyml.apply_style(img).astype(np.uint8)
cv2.imwrite(os.path.join(args.output, img_file), result.astype(np.uint8))
print('Done - results stored in: ', args.output)