-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdetect_explorer.py
142 lines (132 loc) · 4.75 KB
/
detect_explorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import detect_config as config
import cv2
import torch
from einops import rearrange
import matplotlib.pyplot as plt
import os
import numpy
class DExplorer:
def __init__(self):
self.net = config.net()
if os.path.exists(config.weight):
self.net.load_state_dict(torch.load(config.weight, map_location='cpu'))
else:
raise RuntimeError('Model parameters are not loaded')
# self.net.to(config.device)
self.net.eval()
def __call__(self, image_o):
image = image_o.copy()
h, w, c = image.shape
f = min(288 * max(h, w) / min(h, w), 608) / min(h, w)
_w = int(w * f) + (0 if w % 16 == 0 else 16 - w % 16)
_h = int(h * f) + (0 if h % 16 == 0 else 16 - h % 16)
image = cv2.resize(image, (_w, _h), interpolation=cv2.INTER_AREA)
image_tensor = torch.from_numpy(image) / 255
image_tensor = rearrange(image_tensor, 'h w c ->() c h w')
# print(image_tensor.shape)
with torch.no_grad():
y = self.net(image_tensor).cpu()
points = self.select_box(y, (_w, _h))
# for point, c in points:
# x1, x2, x3, x4, y1, y2, y3, y4 = point.reshape(-1)
# x1, x2, x3, x4 = x1 * _w, x2 * _w, x3 * _w, x4 * _w
# y1, y2, y3, y4 = y1 * _h, y2 * _h, y3 * _h, y4 * _h
# i = 1
# for x, y in [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]:
# image = cv2.circle(image, (int(x), int(y)), 2, (0, 0, 255), -1)
# image = cv2.putText(image, str(i), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# i += 1
# cv2.imshow('a', image)
#
# # print(points)
# cv2.waitKey()
return points
def select_box(self, predict, size, dims=208, stride=16):
wh = numpy.array([[size[0]], [size[1]]])
probs = predict[0, :, :, 0:2]
# # a = probs[:,:,1]>0.9
# print(a)
probs = torch.softmax(probs, dim=-1).numpy()
# a = probs[:, :, 1] > 0.9
# print(a)
# plt.imshow(a.astype("uint8"))
# plt.show()
# print(predict.shape)
affines = torch.cat(
(
predict[0, :, :, 2:3],
predict[0, :, :, 3:4],
predict[0, :, :, 4:5],
predict[0, :, :, 5:6],
predict[0, :, :, 6:7],
predict[0, :, :, 7:8]
),
dim=2
)
h, w, c = affines.shape
affines = affines.reshape(h, w, 2, 3).numpy()
scale = ((dims + 40.0) / 2.0) / stride
unit = numpy.array([[-0.5, -0.5, 1], [0.5, -0.5, 1], [0.5, 0.5, 1], [-0.5, 0.5, 1]]).transpose((1, 0))
h, w, _ = probs.shape
candidates = []
for i in range(h):
for j in range(w):
if probs[i, j, 1] > config.confidence_threshold:
affine = affines[i, j]
pts = affine @ unit
# print(affine)
# print(affine)
pts *= scale
pts += numpy.array([[j + 0.5], [i + 0.5]])
pts *= stride
# print(pts)
pts /= wh
# exit()
candidates.append((pts, probs[i, j, 1]))
# break
candidates.sort(key=lambda x: x[1], reverse=True)
# print(candidates)
labels = []
# exit()
'''非极大值抑制'''
for pts_c, prob_c in candidates:
tl_c = pts_c.min(axis=1)
# print('tl_c:',tl_c)
# exit()
br_c = pts_c.max(axis=1)
overlap = False
for pts_l, _ in labels:
tl_l = pts_l.min(axis=1)
br_l = pts_l.max(axis=1)
if self.iou(tl_c, br_c, tl_l, br_l) > 0.1:
overlap = True
break
if not overlap:
labels.append((pts_c, prob_c))
return labels
@staticmethod
def iou(tl1, br1, tl2, br2):
x1, y1 = tl1
x2, y2 = br1
x3, y3 = tl2
x4, y4 = br2
wh1 = br1 - tl1
wh2 = br2 - tl2
assert ((wh1 >= 0).sum() > 0 and (wh2 >= 0).sum() > 0)
s1 = (y2 - y1) * (x2 - x1)
s2 = (y4 - y3) * (x4 - x3)
_x1 = max(x1, x3)
_y1 = max(y1, y3)
_x2 = min(x2, x4)
_y2 = max(y2, y4)
w = max(0, _x2 - _x1)
h = max(0, _y2 - _y1)
i = w * h
return i / (s1 + s2 - i)
if __name__ == '__main__':
# import numpy
e = DExplorer()
image = cv2.imread('test_image.jpg')
# image = numpy.zeros((208, 208, 3), dtype=numpy.uint8)
labe = e(image)
print(labe)