Our model predicts the presence of kidney tumors based on given CT-scan images, determining whether a person has a tumor or not.
- Update config.yaml
- Update secrets.yaml [Optional]
- Update params.yaml
- Update the entity
- Update the configuration manager in src config
- Update the components
- Update the pipeline
- Update the main.py
- Update the dvc.yaml
- app.py
Clone the repository
[https://github.com/HimanshuRajput013/Kidney_disease_predication_using_deep_learning]
conda create -n env python=3.8 -y
conda activate env
pip install -r requirements.txt
# Finally run the following command
python app.py
Now,
open up you local host and port
- mlflow ui
MLFLOW_TRACKING_URI=
MLFLOW_TRACKING_USERNAME=
MLFLOW_TRACKING_PASSWORD=
python script.py
Run this to export as env variables:
export MLFLOW_TRACKING_URI=https://dagshub.com/HimanshuRajput013/Kidney_disease_predication_using_deep_learning.mlflow
export MLFLOW_TRACKING_USERNAME=HimanshuRajput013
export MLFLOW_TRACKING_PASSWORD=
- dvc init
- dvc repro
- dvc dag
MLflow
- Its Production Grade
- Trace all of your expriements
- Logging & taging your model
DVC
- Its very lite weight for POC only
- lite weight expriements tracker
- It can perform Orchestration (Creating Pipelines)