Skip to content

Commit

Permalink
update source code
Browse files Browse the repository at this point in the history
  • Loading branch information
Honchkrow committed Oct 8, 2024
1 parent 54c8e40 commit 4936e1f
Show file tree
Hide file tree
Showing 4 changed files with 55 additions and 27 deletions.
26 changes: 19 additions & 7 deletions Demo/Reproduce_Scripts/demo_breast.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
from sklearn.metrics import adjusted_rand_score
from sklearn.cluster import SpectralClustering
from Space.cons_func import get_results, get_domains
from Space.utils import calculate_location_adj, plot_results_ari, get_bool_martix
from Space.utils import calculate_location_adj, plot_results_ari, get_bool_martix,plot_ari_with_removal

adata = sc.read_visium(
path="./Data/V1_Breast_Cancer_Block_A_Section_1", count_file="filtered_feature_bc_matrix.h5"
Expand Down Expand Up @@ -80,9 +80,11 @@
mul_reults = mul_reults.drop('ground_truth', axis=1)"""


plot_results_ari(mul_reults)
mul_reults = mul_reults.drop("SpaceFlow", axis=1)
mul_reults = mul_reults.drop("MENDER", axis=1)
mul_reults = plot_ari_with_removal(mul_reults, 2)

# plot_results_ari(mul_reults)
# mul_reults = mul_reults.drop("SpaceFlow", axis=1)
# mul_reults = mul_reults.drop("MENDER", axis=1)

pos_similarity = calculate_location_adj(adata.obsm["spatial"], l=123)

Expand All @@ -98,8 +100,18 @@
learning_rate=learning_rate,
)
con_martix = model.train()
sc = SpectralClustering(n_clusters=k, affinity="precomputed", random_state=666)
labels = sc.fit_predict(con_martix)
adata.obs["consensus"] = labels
sClustering = SpectralClustering(n_clusters=k, affinity="precomputed", random_state=666)
labels = sClustering.fit_predict(con_martix)
adata.obs["Space"] = labels
adata.obs["Space"] = adata.obs["Space"].astype('str')
ari = adjusted_rand_score(labels, gt.values)
print(ari)

sc.pl.spatial(adata, color="Space", title='Space (ARI=%.2f)'%ari)

sc.tl.rank_genes_groups(adata, 'Space', groups=["2"], reference="0", method='wilcoxon')
sc.pl.rank_genes_groups(adata, groups=['2'], n_genes=20)

sc.pl.rank_genes_groups_violin(adata, groups='2', n_genes=8)

sc.pl.violin(adata, ['PBX1', 'KRT18', 'COX6C'], groupby='Space')
12 changes: 7 additions & 5 deletions Demo/Reproduce_Scripts/demo_hip.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

os.environ["R_HOME"] = "/home/zw/software/miniforge-pypy3/envs/space/lib/R"
import Space

slide_id = "19"
from Space.cons_func import (
run_GraphST,
run_Leiden,
Expand All @@ -20,10 +20,7 @@
from sklearn.metrics import adjusted_rand_score
from sklearn.cluster import SpectralClustering
from Space.cons_func import get_results, get_domains
from Space.utils import calculate_location_adj, plot_results_ari, get_bool_martix

# change slice
slide_id = "19"
from Space.utils import calculate_location_adj, plot_results_ari, get_bool_martix,plot_ari_with_removal

adata = sc.read(f"./Data/Mouse_hippocampus_MERFISH/hip_adata-0.{slide_id}.h5ad")
adata.var_names_make_unique()
Expand Down Expand Up @@ -74,6 +71,9 @@
mul_reults = mul_reults.drop("MENDER", axis=1)
mul_reults = mul_reults.drop("SpaGCN", axis=1)
mul_reults = mul_reults.drop("stLearn", axis=1)


# mul_reults = plot_ari_with_removal(mul_reults,8)
pos_similarity = calculate_location_adj(adata.obsm["spatial"], l=123)

model = Space.Space(
Expand All @@ -93,3 +93,5 @@
adata.obs["consensus"] = labels
ari = adjusted_rand_score(labels, adata.obs["ground_truth"].values)
print(ari)


22 changes: 15 additions & 7 deletions Demo/Reproduce_Scripts/demo_pa.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,11 @@
from sklearn.metrics import adjusted_rand_score
from sklearn.cluster import SpectralClustering
from Space.cons_func import get_results, get_domains
from Space.utils import calculate_location_adj, plot_results_ari, get_bool_martix
from Space.utils import calculate_location_adj, plot_results_ari, get_bool_martix,plot_ari_with_removal


slide_id = "5"
slide_id = "14"
# slide_id = "5"
adata = sc.read("./Data/SRARmap_pa/MS_raw_Dataset11_Dataset11_data.h5ad")
adata = adata[adata.obs["slice_id"] == f"BZ{slide_id}", :]
adata.var_names_make_unique()
Expand Down Expand Up @@ -63,12 +64,18 @@
"""collected_results = get_results(func_dict, use_multithreading=True, monitor_performance=True)
mul_reults = get_domains(adata,collected_results,gt)
mul_reults = mul_reults.drop('ground_truth', axis=1)"""
plot_results_ari(mul_reults)
# plot_results_ari(mul_reults)
# mul_reults = mul_reults.drop('Leiden', axis=1)
# mul_reults = mul_reults.drop('SpaGCN', axis=1)
# mul_reults = mul_reults.drop('stLearn', axis=1)
# mul_reults = mul_reults.drop('SCANPY', axis=1)


mul_reults = plot_ari_with_removal(mul_reults,4)


pos_similarity = calculate_location_adj(adata.obsm["spatial"], l=123)
mul_reults = mul_reults.drop('Leiden', axis=1)
mul_reults = mul_reults.drop('SpaGCN', axis=1)
mul_reults = mul_reults.drop('stLearn', axis=1)
mul_reults = mul_reults.drop('SCANPY', axis=1)

model = Space.Space(
get_bool_martix(mul_reults),
pos_similarity,
Expand All @@ -80,6 +87,7 @@
beta=1,
learning_rate=learning_rate,
)

con_martix = model.train()
sc = SpectralClustering(n_clusters=k, affinity="precomputed", random_state=666)
labels = sc.fit_predict(con_martix)
Expand Down
22 changes: 14 additions & 8 deletions Demo/Reproduce_Scripts/demo_seq.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,14 +19,14 @@
from sklearn.metrics import adjusted_rand_score
from sklearn.cluster import SpectralClustering
from Space.cons_func import get_results, get_domains
from Space.utils import calculate_location_adj, plot_results_ari, get_bool_martix
slide_id = "2"
from Space.utils import calculate_location_adj, plot_results_ari, get_bool_martix,plot_ari_with_removal
slide_id = "3"
adata = sc.read(f"./Data/BARISTASeq/BARISTASeq_Sun2021Integrating_Slice_{slide_id}_data.h5ad")
adata.var_names_make_unique()

gt = adata.obs["layer"]
k = 6
epochs = 300
epochs = 200
seed = 666
alpha = 1
learning_rate = 0.001
Expand All @@ -53,15 +53,21 @@
# mul_reults = mul_reults.iloc[:, 2:].dropna()


collected_results = get_results(func_dict, use_multithreading=False, monitor_performance=True)
mul_reults = get_domains(adata,collected_results,gt)
mul_reults= mul_reults.loc[mul_reults["ground_truth"] != 'outside_VISp']
# collected_results = get_results(func_dict, use_multithreading=False, monitor_performance=True)
# mul_reults = get_domains(adata,collected_results,gt)
# mul_reults= mul_reults.loc[mul_reults["ground_truth"] != 'outside_VISp']
# mul_reults = mul_reults.dropna()
# mul_reults = mul_reults.drop('ground_truth', axis=1)

mul_reults = pd.read_csv(f"./Data/BARISTASeq/result{slide_id}.csv", header=0, index_col=0)
mul_reults= mul_reults.loc[mul_reults["Ground Truth"] != 'outside_VISp']
mul_reults = mul_reults.dropna()
mul_reults = mul_reults.drop('ground_truth', axis=1)
mul_reults = mul_reults.iloc[:, 2:]

mul_reults = plot_ari_with_removal(mul_reults,4)


plot_results_ari(mul_reults)
# plot_results_ari(mul_reults)
outside_VISp_indices = adata.obs["layer"] == "outside_VISp"
adata = adata[~outside_VISp_indices]
gt = adata.obs["layer"]
Expand Down

0 comments on commit 4936e1f

Please sign in to comment.